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CHAPTER ONE:

INTRODUCTION

1.1 Background
A desirable objective in the design of aircraft components is to minimize the

weight. A lighter aircraft operates more efficiently. A helicopter's transmission

system is one example where design is focused on weight minimization. A

transmission system utilizes various types of gears, such as spur gears and spiral bevel

gears. Because spur gear geometry is relatively simple, optimizing the design of these

gears using numerical methods has been researched significantly. However, the

geometry of spiral bevel gears is much more complex, and less research has focused

on using numerical methods to evaluate their design and safety.

One obvious method to minimize the weight of a gear is to reduce the amount

of material. However, removing material can sacrifice the strength of the gear. In

addition, fatigue cracks in gears are a design concern because of the cyclical loading

on a gear tooth. Research shows that the size of a spur gear's rim with respect to its

tooth height determines the crack trajectories [Lewicki et al. 1997a, 1997b]. This

knowledge is critical because it allows the designer to predict failure modes based on

geometry.
Two common failure modes of a gear are rim fracture and tooth fracture. Rim

fracture, shown in Figure 1.1 [Albrecht 1988], can be catastrophic and lead to the loss

of the aircraft and lives. On the other hand, Figure 1.2 is an example of a tooth

fracture [Alban 1985]. Tooth fracture is the benign failure mode because it is most

often detected prior to catastrophic failure. Knowing how crack trajectories are

affected by design changes is important with respect to these two failure modes.

..T,
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Figure 1.2: Spiral bevel gear tooth failure [Alban 1985].

In general, gears in rotorcrafl applications are designed for infinite life; the

gears are designed to prevent any type of failure from occurring. Developing a

damage tolerant design approach could reduce cost and increase effectiveness of the

gear. Lewicki et al.'s work on determining the effect of gear rim thickness on crack

trajectories is a good example of how damage tolerance can be applied to gears.

Knowing how the gear's geometry affects the failure mode allows a designer to select

a geometry Such that, if a crack were tO develop,:ihe failure mode would be benign.

Other examples of damage tolerant design can be found in aircraft structures [Swift

1984] [Rudd 1984] [Miller et al. 1999], helicopter rotor heads [Irving et al. 1999], and

train rails [Jeong et al. 1997].

Damage tolerance involves designing under the assumption that flaws exist in

the structure [Rudd 1984]. The initial design then focuses on making the structure

sufficiently tolerant to the flaws such that the structural integrity is not lost. Damage
tolerant design ailows for multiple load paths to prevent the structure from failing

within a specified time after one element fails. In this regard, gears would be designed

for the benign failure mode, tooth failure, as opposed to rim failure, which could be

catastrophic.

Current American Gear Manufacturers Association (AGMA) standards use

tables and indices to approximate the Strength characteristics of gears [AGMA 1996].

The finite element method (_M) and boundary element method (BEM) are becoming

more useful and common approaches to study gear designs. A primary reason for this

is the tremendous increase in computing power. Section 1.2 summarizes recent

research related to modeling gears numerically.

Limited work has focused on predicting crack trajectories in spiral bevel gears.

This is most likely because a spiral bevel gear's geometry is complex and requires a

three dimensional representation. Structures with uncomplicated geometries, such as
spur gears, can be modeled in two dimensions. Modeling an object in three

dimensions requires a crack to also be modeled in three dimensions. Three

dimensional crack representations introduce unique challenges that do not arise when

modeling in two dimensions.

A three dimensional crack model consists of a continuous crack front. When a

simpler geometry allows for a two dimensional simplification, a crack front is now

NASAJCR--2000-210062 2



representedby asinglepoint, thecracktip. At acracktip thereareonly two modesof
displacement;in threedimensionalmodels,however,there is a distribution of three
modesof displacementalongthecrackfront. Propagatinga crack in two dimensions
iscompletelydefinedby a singleangleandextensionlength. On theotherhand,along
thecrackfront thereis adistributionof anglesandlengths.

Codesdevelopedby theComellFractureGroupat CornellUniversity, suchas
Object Solid Modeler (OSM) andFRactureANalysis Code- 3D (FRANC3D), have
beendevelopedto handlethreedimensionalfractureproblems. FRANC3D explicitly
modelscracksand predictscracktrajectoriesunder static loads. The crack growth
models are basedon acceptedfatigue crack growth and linear elastic fracture
mechanics(LEFM) mixed modetheories.

Becausegearsoperateat high loading frequencies,the actualtime from crack
initiation to failure is limited. As a result, crack trajectories and preventing
catastrophicfailuremodesaretheprimary concernin geardesign. Crack growth rates

are not as important. The goal of this research is to investigate issues related to

predicting three dimensional fatigue crack growth in spiral bevel gears. A simulation

that allows for arbitrarily shaped curved crack fronts and crack trajectories will be

most accurate. In addition, the loading on a tooth as a function of time, position, and

magnitude should be considered.

1.2 Numerical Analyses of Gears
Computational fracture mechanics applied to gear design is a relatively novel

research area. As a result, the majority of work has been limited to two dimensional

analyses. In three dimensions, very little work has predicted crack trajectories in

gears. This section summarizes some pertinent developments in applying numerical

methods and fracture mechanics to gear design.

The complexity of two dimensional gear analyses has evolved. Albrecht

[1988] used the FEM to investigate gear tooth stresses, gear resonance, and

transmission noise. Individual gear teeth were modeled in two dimensions and the

increase in accuracy when using the FEM over AGMA standard indices for

calculating gear tooth root stresses was demonstrated. Blarasin et al. [1997] used the

FEM and weight function technique to evaluate stress intensity factors (SIFs) in

specimens similar to spur gear teeth. Cracks with varying depths were introduced in

two dimensional models and a constant single point load was applied. The SIFs were

determined as a function of crack depth. Fatigue lives were calculated, but predictions

of the crack trajectory were never performed. Flasker et al. [1993] used two

dimensional FEM to analyze fatigue crack growth in a gear of a car gearbox. The

analyses considered highest point of single tooth contact (HPSTC), but variable

loading at that point. Residual stresses from the case and core were simulated with

thermal loading. Based on a given load history, the crack was incrementally

propagated. Lewicki et al. [1997a, 1997b] combined FEM and LEFM to investigate

crack trajectories in thin rimmed spur gears. The work successfully matched crack

trajectory predictions to experiments.

Limited three dimensional crack analyses of gears have been achieved. The

work most often concerns simple geometries and loading conditions. Pehan et al.

NAS A/CR---2000-210062 3



[ 1997] used the FEM to look at two and three dimensional spur gear models. Residual

stresses due to case hardening were modeled as nodal thermal loads. Two different

sized models were analyzed: one tooth including the arc length of the gear rim directly

below the tooth and three teeth with the corresponding gear rim arc length. To

determine the new crack front, they used a criterion such that the SIFs along the new

front should be constant. Paris' model was used to calculate the fatigue lives based on

the SIFS near the midpoint of the crack front. A constant load location with constant

magnitude and simple spur gear geometry allowed Pehan et al. to consider only crack

opening (mode I) effects. Their method for determining the new crack fronts is

computationally intensive and limited since three dimensional effects are not
accommodated.

Lewicki et al. [1998] performed three dimensional crack propagation studies

using the FEM and BEM to investigate fracture characteristics of a split tooth gear

configuration. The geometry of the split tooth configuration is similar to a spur gear.

The analyses used single toad locations and explored propagation paths for various

crack locations. The strong point of this work is that three dimensional simulations of

crack trajectories were performed in addition to calculating fatigue crack growth rates.

Very little work, in addition to Lewicki et al.'s research, has used the BEM to

analyze gears. Sfakiotakis [1997] performed two dimensional BEM analyses of gear

teeth considering mechanical and thermal loads. Rather than perform trajectory

predictions, they calculated SIFs for different size initial cracks with various loading

conditions and crack locations. Fatigue loading was not considered. Fu et al. [1995]

also used the BEM for stress analysis related to optimizing the forging die of spiral

bevel gears.
The progression of research related to computer analysis of gears has led to the

investigation of crack growth in spiral bevel gears. FEM models of spiral bevel gears

can be created from Handschuh et al,'s [1991] computer program that models the

cutting process of spiral bevel gears to determine tooth surface coordinates in three

dimensions. Litvin et al. [1996] utilized this pro_am, in conjunction with tooth

contact analysis [Litvin et al. 1991], to determine how bearing (contact between

mating gear teeth) changes with different spiral bevel gear tooth surface designs.

Transmission error curves were generated that gave an indication of the efficiency of

the gear,

Along with Litvin et al.'s work [1991], tooth contact analysis of mating gears

has been explored by Bibel et al. [1995 and 1996], Savage et al. [1989], and Bingyuan

et al. [1991]. Bibel et al. successfully modeled multi-tooth spiral bevel gears with

deformable contact using the FEM. They conducted a stress analysis of mating spiral

bevel gears and analytically modeled, using gap elements from general purpose finite

element codes, the rolling contact between the gear teeth. Bibel et al.'s work can be

used to investigate how changes in gear geometry affect tooth deflections. Variations

in tooth deflections can alter the contact zone between gear teeth. Savage et al.

developed analytical methods to predict, using tooth contact analysis, the shift in

contact ellipses due to elastic deflections of a spiral bevel gear's shafts and bearings

under loadsl Savage et al. and Bibel et al.'s work was related to spiral bevel gears,

however, they did not incorporate fracture mechanics. On the other hand, Bingyuan et
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al. approximated the geometry of gears in contact as a pair of disk rollers compressed

together. The linear elastic stresses in the disks could be written in closed form. The

SIFs were calculated using the closed form expressions. Bingyuan et al.'s primary

focus was to calculate surface fatigue life and compute crack growth rates. No

trajectory predictions were made.

The majority of the aforementioned research on spiral bevel gears is unrelated

to failure, but rather associated with design and efficiency; methods have been

developed to create numerical models of spiral bevel gears and predict contact areas.

Crack trajectories have been predicted in gears with simpler geometry that can be

represented by two dimensional models. This thesis is a natural extension of the

research to date. The next step is to computationally model fatigue crack trajectories

in spiral bevel gears.

1.3 Overview of Chapters

This thesis is divided into eight chapters. The first and last chapters are

overview and summary. The remaining chapters each build upon one another and

propose, apply, and evaluate methods for predicting fatigue crack growth in spiral

bevel gears.

Chapter Two contains background information on gears, with particular

attention to spiral bevel gears. The objective is to define vocabulary and concepts

related to spiral bevel gears that will be used throughout the thesis. In addition, the

work of the thesis is further motivated by examples of gear failures and the current

design objectives for gears.

A focus of this thesis is to demonstrate that computational fracture mechanics

can be used to analyze complex gear geometries under realistic loading conditions.

LEFM and fatigue theories that are utilized to accomplish this task are presented in

Chapter Three. Methods that are currently implemented in two and three dimensions

to compute crack trajectories are demonstrated through examples.

Chapter Four explores the significance of compression loading on calculated

crack growth rates. The magnitude of compressive stresses in a gear's tooth root is a

function of the rim thickness. If fatigue crack growth rates are highly sensitive to this

compression, then growth rates may warrant more attention in designing gears. The

concept of fatigue crack closure is used to investigate fatigue crack propagation rates

in AISI 9310, a common gear steel. First, the concept of fatigue crack closure is

discussed. A material-independent method is presented for obtaining fatigue crack

growth rate data that do not vary with stress ratio. The method is demonstrated using

data at various stress ratios for pressure vessel steel. Next, the concepts are applied to

AISI 9310 steel data to obtain an intrinsic fatigue crack growth model. This model is

used to investigate the effect of low stress ratios on fatigue crack growth in AISI 9310.

Chapter Five is an initial investigation into predicting three dimensional

fatigue crack trajectories in a spiral bevel pinion under a moving load. First, a

boundary element model of a pinion is developed. A method to represent the moving

contact area on a gear tooth is discussed. Next, studies are conducted to determine the

smallest model that still accurately represents the operating conditions of the pinion.

Once the model is defined, a crack is introduced into the model, and the initial stress
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intensity factor history under the moving load is calculated. A method to predict

fatigue crack trajectories under the moving load is proposed. The method is then

applied to predict fatigue crack growth trajectories and rates in a spiral bevel pinion.

Fatigue crack growth results from a spiral bevel pinion in operation are

necessary to validate the predictions. The sponsor of the research efforts of this thesis,

NASA-Glenn Research Center (NASA/GRC), provided a pinion that was tested in

their gear test fixture. Notches were fabricated into several of the teeth's roots prior to

beginning the test. The test data and crack growth results are presented in Chapter 6.

In addition, in an effort to obtain crack front shape and crack growth rate information,

the fracture surfaces are observed with a scanning electron microscope, and the results

are given in the chapter.

The crack trajectory and fatigue life results from the simulation and the tested

pinion are compared in Chapter Seven. To gain insight into the discrepancies between

the prediction and test, the influence of model parameter assumptions and loading

simplifications on crack trajectories and calculated fatigue crack growth rates are

studied. Next, the necessity of the moving, non-proportional load crack growth

method is evaluated by comparing the results to predictions that assume proportional

loading.

Finally, Chapter Eight summarizes the accomplishments of the work in the

previous chapters. Implications of the research conducted and suggestions for future

work are given.

NASA/CR----2000-210062 6



CHAPTER TWO:

GEAR GEOMETRY AND MODELING

2.1 Introduction
Chapter Two covers the basic terms and geometry aspects of a spiral bevel gear.

This terminology and background is essential to motivate the numerical simulations of

this thesis. A gear's design and geometry can be quite complex; however, only the

fundamentals are explained in this chapter.

2.2 Basics of Spiral Bevel Gear Geometry
Gears are used in machinery to transmit motion. Gears operate in pairs. The

two mating gears have similar shapes. The smaller of the mating gears is called the

pinion, and the larger the gear. Motion is transferred from one gear to another by

successively engaging teeth.

There are various types of gears. The shape of the teeth and the angle at which

the mating gears are mounted are a few of the distinguishing characteristics between

the gear types. Gears with intersecting shafts are called bevel gears. The most

common angle to mount bevel gears is 0 = 90 ° , although any intersecting angle could

be used. A bevel gear's form is conical. For comparison, as illustrated in Figure 2.1,

spur gears are cylindrical, and the shafts of the gears are parallel. The geometry of a

spur gear can be almost fully illustrated in two dimensions. However, the conical

shape of a bevel gear requires a three dimensional illustration. This two and three

dimensional difference is where the complexity of the work contained in this thesis

lies.

Pinion

®

Axes of gears run

parallel to each other

Gear

a) Spur gears operate with parallel axes

NASA/CR--2000-210062 7



B

b) Bevel gears operate with intersecting axes

Figure 2.1" Schematics of spur (a) and bevel (b) gears.

The cone defined by the angle between a bevel gear's axis and the line of

tangency with the mating gear is called the pitch cone. In Figure 2. i b, O_ and 82_

define the pitch cones. The gear ratio is the ratio of the angular frequencies of the

mating gears, o.__/COl,which also equals the ratio of sin(02) to sin(01), or, due to

geometry, the ratio of the number of gear teeth to the number of pinion teeth.

a) Straight bevel gear b) Spiral bevel gear

Figure 2.2: Bevel gear drawings [Coy et al. 1988].

Two common bevel gears are the straight bevel gear and the spiral bevel gear.

The main difference between these two gears is the shape of their teeth. The teeth of

the straight bevel gear are straight, and the teeth of the spiral bevel gear are curved.

Figure 2.2 illustrates this difference. When looking along the axis of a spiral bevel

gear, the teeth will either curve counterclockwise or clockwise, depending on whether

NASA/CR--2000-210062 8



the gear is left- or right-handed, respectively. So that the teeth can fit together, or

mesh, a spiral bevel gear and pinion will always have opposite hands. The thickness

and height of a spiral bevel gear tooth varies along the cone. The larger end of the

tooth is the heel, and the smaller the toe. The curvature of the tooth creates concave

and convex tooth surfaces on opposite sides of the tooth, Figure 2.3.

Heel

Convexside

Concav_

Figure 2.3: Schematic of a single spiral bevel gear tooth.

The tooth profile, as shown in Figure 2.4, is one side of the cross section of a

gear tooth. The fillet curve is at the bottom of the tooth profile where it joins the space

between the teeth. The region of the tooth near the fillet is the bottom land, and the

area near the top of the profile is the top land.

Top Land

Tooth Profile

Fillet Curve

\

Bottom Land 3

Figure 2.4: Schematic of cross section of a gear tooth.

The advantage of the spiral bevel gear's curved teeth is to allow for more than

one tooth to be in contact at a time. This makes it significantly stronger than a straight

bevel gear of equal size. Consequently, spiral bevel gears are commonly found in

high speed and high force applications. One such application, which is the focus of

this thesis, is in helicopter transmission systems. The mating spiral bevel gears in the

NAS A/CR--2000-210062 9



transmissionsystemconvertthepowerfrom thehorizontalengineshaftto the vertical

shaft of the main rotor. Gears in this application typically operate at rotational speeds

of 6000 rpm and transmit on the order of 300 hp of power.

Many parallel axis gears, such as spur gears, have involute tooth profiles. As

sketched in Figure 2.5, the involute curve can be visualized by unwrapping thread

from a spool while keeping the thread taut. The path traced by the end of the string is

an involute curve. The spool is the evolute curve. All involute gear geometries are

generated from circle evolute curves. The involute curve then becomes a spur gear

tooth's profile. A closed form solution for the coordinates along the curve exists for

this type of geometry. As a result, the tooth's surface coordinates can be calculated

with relative ease. However, the geometry of a spiral bevel tooth is much more

complex, and there is no closed form solution to describe the surface coordinates.

Handschuh et al. [1991] developed a program to numerically calculate the surface

coordinates of a spiral bevel gear tooth. The program models the kinetics of the

cutting process in creating the gear, along with the basic gear geometry. The program

calculates the coordinates of a spiral bevel gear tooth in three dimensions for use as

input to a finite element model. The numerical models in this thesis were all created

using the tooth geometry coordinates as defined by Handschuh et al.' s program.

Involute Curve

Figure 2.5: Generation of an involute curve.
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Tooth
fractures

Figure 2.6:OH-58 spiral bevel pinion with two fractured teeth.

A spiral bevel gear set is used in the main rotor transmission of the U.S.

Army's OH-58 Kiowa Helicopter. An OH-58 spiral bevel pinion that exhibited tooth

fracture during an experiment is shown in Figure 2.6.

The geometry of the OH-58 gear set will be used throughout this thesis. In the

set, a 19 tooth spiral bevel pinion meshes with a 71 tooth spiral bevel gear. The

pinion's shafts are supported by ball bearings. The input torque is applied at the end

of the pinion's large shaft. The approximate dimensions of a pinion tooth are given

schematically in Figure 2.7.

099/ r.............!: 1016
Figure 2.7: Approximate dimensions of OH-58 spiral bevel pinion tooth.

2.3 Teeth Contact and Loading of a Gear Tooth

According to the theory of gears, there is a point of contact between a spiral

bevel gear and pinion at any instant in time where their surfaces share a common

normal vector. In reality, the tooth surfaces deform elastically under the contact. The

deformation spreads the point of contact over a larger area. The larger area has

traditionally been approximated using Hertzian contact theory. This contact is

conventionally idealized to spread over an elliptical area [Johnson 1985]. The center
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of theellipseis themeancontactpoint, whichdeterminesthe contact ellipse's location

on the tooth surface. The orientations of the ellipse's minor and major axes are

defined by the tooth surface's geometry, curvature, and the alignment between the

gear and pinion. The length of the axes is a function of the load. It can be shown that

the ratio of the axes' lengths is constant and is not a function of the load. The form of

the equations for the length of the ellipse's semi-major and semi-minor axes, a and b,

respectively, is [Johnson 1985] [Timoshenko et al. 1970]:

a = f (2.1a)

b = gL-_-j

where f and g are functions defined by the geometry. The magnitude of force, P,

exerted on the tooth is proportional to the input torque level and gear geometry.

The meshing of the mating gear teeth iS a continuous process. The position of

the area of contact and magnitude of the force exerted between the teeth varies with

time as the gear rotates. Figure 2.8 illustrates schematically the progression of the

contact area along a tooth of a left-handed spiral bevel pinion. In the schematic, the

continuous process has been discretized into a series of elliptical contact patches, or

load step increments. The darkened arrow demonstrates the direction the load moves.

The actual tooth contact pattern during operation is a function of the alignment of the

gear and pinion.

Heel
Single tooth

contact
Double tooth l _

Figure 2.8: Schematic of tooth contact shape and direction during one load cycle of a

left-handed spiral bevel pinion tooth.

Overlap in tooth c0ntaci between adjacent teetff resuitsin two modes of contact:

single tooth contact and double tooth contact. At-the beginning of a meshing cycle for

one tooth, two teeth of the i3inion are in contact with the gear. As the pinion rotates,

the adjoining tooth lose s contactwith the gear and only one pinion tooth receives all of

the force. As the pinion continues to rotate, the load moves further up the pinion

tooth, and the next pinion tooth comes into contact with the gear; the force on a pinion
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tooth is once again reduced due to the double tooth contact. The contact area will

differ for single tooth and double tooth contact. The change in area of the contact is

schematically illustrated in Figures 2.8 and 2.9.

Time Step Tooth 1

2

4

5

6

Tooth 2

Figure 2.9: Schematic of load progression on adjacent pinion teeth.
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In Figure2.9, tooth1and2 aretwo adjacentteethof a spiralbevelpinion. The
ellipsesrepresent"snap shot" areasof contactbetweena gear and a pinion's tooth.
Thedarkenedellipseis theareathatis currentlyin contactwith thegearat a particular
instantin time. Similar to Figure2.8,the largerellipsesrepresentsingletoothcontact,
andthe smallerareareasof doubletooth contact. The first row in Figure2.9 begins
with tooth 1at the lastmomentof singletoothcontact. After adiscretetime step,the
load on tooth 1hasprogressedup thetoothandtooth2 hascomeinto contactnearthe
root, asdepictedin row two. In the final row, or time step,tooth 1 losescontactand
tooth2 advancesinto thestageof singletoothcontact.

It is seenin Figures2.8 and 2.9 that the contactareabetweenmating spiral
bevelgearteethmovesin threespatialdimensionsduringoneloadcycle. Most of the
previous researchinto numerically calculating crack trajectoriesin gears hasbeen
performedon spurgearswith two dimensionalanalysesandhasnot incorporatedthe
moving load discussedabove. Instead,a singleload location on the spurgeartooth
that producesthe maximumstressesin the tooth root during the load cycle hasbeen
usedto analyzethe gear. This loadpositioncorrespondsto thehighestpoint of single
tooth contact (HPSTC). Contact between spur gear teeth only moves in two
directions,and,therefore,this simplificationto investigatea spurgearunder a fixed
load at the HPSTC has proven successful[Lewicki 1995] [Lewicki et al. 1997a].

However, since the contact area between mating spiral bevel gear teeth moves in three

dimensions, the crack front trajectories could be significantly influenced by this three

dimensional effect. As a result, trajectories under the moving load should be predicted

first and compared to trajectories considering only a fixed loading location at HPSTC.

This approach is detailed in Chapters 5 and 7.

It has been implicitly assumed in the above discussion that the traction, or

force over the contact area, is normal to the surface. Dike [1978] points out that this

assumption is valid if there are no frictional forces in the contact area. He also states

that is the case with gears since a lubricant is always used. The lubricant will make

the magnitude of the frictional forces small compared to the normal forces. This

assumption will be utilized in the numerical simulations.

In the same paper, Dike also asserts that there are two main areas in a gear

tooth where the bending stresses may cause damage. The first is the location of
maximum tensile stresses at the fillet of the tooth on the same side as the load. The

second is at the fillet of the tooth on the side opposite the load, where the maximum

compressive stresses occur.

This can be visualized by drawing an analogy between a cantilever beam and a

gear tooth, Figure 2.10. Basic beam theory predicts that the maximum tensile stress

occurs at the beam/wall connection on the outer most fibers on the same side as the

applied load. The maximum compressive stress occurs at the same vertical location,

on the side opposite the load. Similarly, as a gear tooth is loaded, it creates tensile

stresses in the tooth root of the loaded side. In the root of the side opposite the load,

there are compressive stresses. These compressive stresses might also extend into the

fillet and root of the next tooth.
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Applied Load

Maximum Maximum

tensile \ / compressive

stress _ _ stress
, IIII

Maximum l 1
tensiZe\ l 1 /

Maximum

compressive
stress

b) J

Figure 2.10: Stresses in cantilever beam (a) are analogous to gear tooth root (b).

The compressive stresses are noteworthy because Lewicki et al. [1997b]

showed that the magnitude of the compressive stress increases as a gear's rim thickness

decreases. The compressive stress could affect the crack propagation trajectories and

crack growth rates. However, it is demonstrated in Chapter 4 that low stress ratios, i.e.

large compressive stresses compared to tensile stresses, do not have a significant

influence on crack predictions.

Up to this point, only frictional loads and traction normal to the tooth's surface

have been discussed. The normal loads are the only loading conditions to be

considered in this thesis. However, additional sources do produce forces on the gear.

Some of these additional loads include dynamic effects, centrifugal forces, and

residual stresses due to the case hardening of the gear. In addition, since a lubricant is

always used when gears are in operation, lubricant could get inside a crack and create

hydraulic pressure.
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2.4 Gear Materials

As discussed in Section 2.2, spiral bevel gears are commonly used in helicopter

transmission systems. In this application, the gear's material impacts the life and

performance of the gear. Most often a high hardenable iron or steel alloy is used. The

traditional material for the OH-58 spiral bevel gear is AISI 9310 steel (AMS 6265 or

AMS 6260). Some other aircraft quality gear steels are VASCO X-2, CBS 600, CBS

1000, Super Nitroalloy, and EX-53. The choice of material is dependent on operating

variables such as temperature, loads, lubricant, and cost. The material characteristics

most important for gears are surface fatigue life, hardenability, fracture toughness, and

yield strength. Table 2.1 shows the chemical composition of AISI 9310 JAMS 1996].

Table 2.2 contains relevant material properties.

Table 2.1" Chemical corn 9osition of AISI 9310 b 9ercent [AMS 1996].
C Mn P S Si Cu Ni Cr B Mo Fe

Minimum 0.07 0.40 .... 0.15 -- 3.00 1.00 -- 0.08 95.30
=

Maximum 0.13 0.70 0.015 0.015 0.35 0.35 3.50 1.40 0.001 0.15 93.39

Most gears are case hardened. Case hardening increases the wear life of the gear.

In general, the gears are vacuum carburized to an effective case depth _ of 0.032 in -

0.040 in (0.813 mm - 1.016 mm). The case hardness specification is 60 - 63 Rockwell

C (RC), and the core hardness is 31 - 41 RC [AGMA 1983].

Table 2.2: Material pr

Tensile Strength 2

Yield Stren£th _

Young's Modulus
Poisson's Ratio

Fracture Toughness 3

Average Grain Size 4

c)perties of AISI 9310.

185 x 10 3 psi

160 x 10 3 psi

30 x 106 psi
0.3

85 ksi*in °5

ASTM No. 5 or finer

0.00244 in)

2.5 Motivation to Model Gear Failures

Gear failures can be categorized into several failure modes. Tooth bending,

pitting, spalling, and thermal fatigue can all be placed in the category of fatigue

failures. Examples of impact type of failures are tooth shear, tooth chipping, and case

crushing. Wear and stress rupture are two additional modes of failure. According to

[Dudley 1986], the three most common failures are tooth bending fatigue, tooth

bending impact, and abrasive tooth wear. He gives examples of a variety of failures

from tooth bending fatigue to spalling to rolling contact fatigue in both spur and spiral

bevel gears,

The effective case depth is defined as the depth to reach 50 RC.
x[Coy et al. 1995]
2 [Townsend et al. 1991]
3 [AMS 1996]
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The focusof this thesisis on tooth bendingfatiguefailure becausethis is one
of themostcommonfailures. In general,tooth bendingfatiguecrackgrowth canlead
to two typesof failures. In rotorcraftapplications,the typeof failure could beeither
benign or catastrophic. Crack propagationthat leadsto the loss of one or more
individual teethwill mostlikely beabenigntypeof failure. The remaininggearteeth
will still beable to sustainload, and the failure shouldbe detecteddue to excessive
vibration andnoise. On the otherhand,a crackthat propagatesinto andthroughthe
rim of the gearleavesthe gearinoperable. The gearwill no longerbe ableto carry
any load,andwill mostlikely leadto lossof aircraftandlife.

Alban [1985, 1986]proposesa "classic tooth-bendingfatigue" scenario. He
suggestsfive conditionsthatcharacterizethe"classic" failure:

1. The originof thefractureis on theconcavesidein theroot.
2. The origin is midwaybetweentheheelandthetoe.
3. The crack propagatesfirst slowly toward thezero-stresspoint in the root.

As the crack grows,the locationof the zero-stresspoint movestoward a
point undertheroot of theconvexside. Thecrackthenprogressesoutward
throughtheremainingligamenttowardtheconvexside'sroot.

4. As the crackpropagates,the tooth deflection increasesonly up to a point
when the deflection is large enough that the load is picked up
simultaneouslyby the next tooth. Since the load on the first tooth is
relieved,therateof increasein thecrackgrowthratedecreases.

5. No materialflawsarepresent.

Alban presentsresultsfrom aphotoelasticstudyof matingspurgearteeth. The
studydemonstratestheshift in thezero-stresspoint. Thezero-stresspoint is wherethe
tensilestressesin the root of loadedsideof thetooth shift to compressivestresseson
the loadfree side. Figure 2.11showsstresscontoursfor two matingspurgearteeth.
In thebottomgear,oneof the teethis crackedandanothertoothhasalreadyfractured
off. The teethof the top geararenot flawed. By comparingcontoursbetweenthe
matingcrackedanduncrackedteeth,it is easyto pick out thezero-stresslocationshift
towardtheroot of the loadfreeside. The shift of thezero-stresslocationdemonstrates
the changingstressstatein the tooth. This changingstressstatedrives the crack to
turn. The point in thetwo dimensionalcrosssectionwherethecrackturns is actually
a ridge whenthe third spatialdimension,the lengthof the tooth, is considered.This
classic tooth failure scenariowill be used as a guideline when evaluating the
predictionandexperimentalresultsin thefollowing chapters.
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Compressive stress Zero-stress point Tensile stress

_....____l ' _e_nt str_SrSalture d

/tooth

Crack ....

Figure 2.11: Photoelastic results from mating spur gear teeth (stress contour

photograph from [Alban 1985]).

2.5.1 Gear Failures

Gears in rotorcrafl applications are currently designed for infinite life.

Therefore, gear failures are not common. However, failures do occur primarily as a

result from manufacturing flaws, metallurgical flaws, and misalignment.

Dudley [1996] gives an overview of the various factors affecting a gear's life.

Some of the more common metallurgical flaws listed are case depth too thin or too

thick, grinding burns on the case, core hardness too low, inhomogeneities in the

material microstructure, composition of the steel not within specification limits, and

quenching cracks. In addition, examples of surface durability problems, such as

pitting, are presented. A pitting flaw could develop into a starter crack for a fatigue

failure .............

Pepi [1996] examined a failed spiral bevel gear in an Army cargo helicopter.

A grinding bum was determined as the origin of the fatigue crack. In addition, it was
learned that the carburized case was deeper than acceptable limits in the area of the

crack origin, which contributed to crack growth. Roth et al. [1992] determined a
microstructure inhomogeneity, introduced during the remelting process, to be the

cause of a fatigue crack in a carburized AISI 9310 spiral bevel gear. Both of these

failures could be classified as manufacturing flaws.

Albrecht [1988] gives an example of a series of failures in the Boeing Chinook

helicopter, which were caused by gear resonance with insufficient damping. Couchon

et al. [1993] gives an example of a gear failure resulting from excessive misalignment.

The excessive misaliglament was due to a failed bearing that supported the pinion.

The misalignment led to a fatigue crack on the loaded side of the tooth. An analysis of

an input spiral bevel pinion fatigue crack failure in a Royal Australian Navy helicopter
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is given by McFadden [1985]. These examples demonstrate that gear failures do

occur in service.

Gear experts are researching ways to make gears quieter and lighter through

changes in the geometry. However, at the same time there is a tradeoff between

weight, noise, and reliability. Geometry changes could have negative effects on the

strength and crack trajectory characteristics of the gear. A design tool to predict the

performance of proposed gear designs and changes, such as discussed by Lewicki

[1995], would be extremely useful. Savage et al. [1992] used an optimization

procedure to design spiral bevel gears using gear tooth bending strength and contact

parameters as constraints. Including effects of geometry changes on the strength and

failure modes could contribute greatly to his procedures.

2.5.2 OH-58 Spiral Bevel Gear Design Objectives

In rotorcrafl applications, a primary source of vibration of the gear box is

produced by the spiral bevel gears [Coy et al. 1987] [Lewicki et al. 1993]. In turn, the

vibration of the gear box accounts for the majority of the interior cabin noise. As a

result, recent design has focused on modifying the gear's geometry to reduce the

vibration and noise. In addition, due to the application of the gear, a continuous

design objective is to make the gear lighter and more reliable.

Adjusting the geometry of the gear, however, may jeopardize the gear's

strength characteristics. Lewicki et al. [1997a] showed that the failure mode in spur

gears is closely related to the gear's rim thickness. It was demonstrated that if an
initial flaw exists in the root of a tooth, the crack would propagate either through the

rim or through the tooth for a thin rimmed and thick rimmed gear respectively. As a

result, a tool to evaluate the strength and fatigue life characteristics of proposed gear

designs would be useful.
Albrecht [1988] demonstrated that AGMA standards to determine gear stresses

and life were insufficient. He also showed the advantages of a numerical simulation

method, such as the FEM, over the currently accepted AGMA standards at that time.
The work of this thesis is an extension of the numerical approaches to determine gear

stresses and life.

2.6 Chapter Summary
This chapter covered basic terminology and geometry aspects of gears.

Concepts related to spiral bevel gears were the primary focus. In addition, methods to
visualize and model the contact between mating spiral bevel gears were presented.

Characteristics of a common gear steel, AISI 9310, were summarized. These

materials properties will be used in the numerical simulations. Finally, some

examples of gear failures and gear design objectives were discussed to motivate the

significance of modeling gear failures numerically.
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CHAPTER THREE:

COMPUTATIONAL FRACTURE MECHANICS

3.1 Introduction

This chapter discusses areas of computational fracture mechanics relevant to
the work of this thesis. The areas of focus are LEFM, fatigue, and the BEM. The

BEM is used in a fashion similar to the more common FEM. The primary difference

between the methods in three dimensional elasticity problems is that with the BEM

only the surfaces, or boundaries, are meshed, as opposed to the volume that is meshed

in the FEM. In computational LEFM, the displacement and/or stress results from a

numerical analysis are used to calculate the SIFs. The SIFs are in turn used to predict

how and where a crack may grow.

The analyses of this work are conducted using a suite of computational fracture

mechanics programs developed by the Cornell Fracture Group. OSM is used to create

a geometry model of the OH-58 spiral bevel pinion. FRANC3D is used as a pre- and

post-processor to the boundary element solver program, BES. FRANC3D has built in

features to compute SIFs using the displacement correlation technique.

3.2 Fracture Mechanics and Fatigue

Westergaard [1939], Irwin [1957], and Williams [1957] were the first to write
closed form solutions for the stress distribution near a flaw. Their solutions were

limited to very specific geometries and loading conditions. Their results, in the form

of a series solution, showed that the stress a distance r from a crack tip varied as r -_/2 .

It can be shown that, under linear elastic conditions, the first term of the series solution

for the stress near a flaw in any body, under mode I, or opening, loading is given by:

K t - (z)

o,/" -- (01 (3.1)
where r and 0 are polar coordinates as defined in Figure 3.1,fj is a function of 0 that is

dependent on the mode of loading, and Kt is the mode I stress intensity factor. The

sub- and super-scripts (/) denote mode I loading. Similarly, two other modes of

loading can be defined as in-plane shear, mode II, and out-of-plane shear, mode III.

The stress solutions for mode II and III loading are identical in form to Equation (3.1),

but with all of the sub- and super-scripts I replaced with H or IlL
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Figure 3.1' Coordinate system at a crack tip.

A significant feature of Equation (3.1) is that as r goes to zero, or as one

approaches the crack tip, this first term of the series solution approaches infinity.

However, the higher order terms of the series will remain finite. For this reason, a

large portion of LEFM focuses on this first term of the series expansion only. In

reality, the stresses do not approach infinity at the crack tip. There is a zone around

the tip where linear elastic conditions do not h01d and plastic deformfition takes place.

This zone is called the plastic zone and results in blunting of the sharp crack tip.

LEFM holds when the p!ast!c zone issmall in relation to the length scale of the crack.
......... _e SIF is a convement way to describe the stress and displacement

d_stributions near a flaw !9 i]nearelastic bodles. The SIF for any mode is a function of

: ge0metryl Crack length, andloading. The general equation for a SIF is

K = flo'_/-_ (3.2)

/3 is a dimensionless factor that depends on geometry, 2a is the crack length, and cr is

the far field stress. It can be seen from Equation (3.2) that the units of K are

stress * leith.

For a crack to propagate, the energy supplied to the system must be greater

than or equal to the energy necessary....... for new surface formation. When supplying

energy to the system, the energy can primarily go into plastic deformation or new

surface formation. LEFM assumes that all of the energy supplied goes into forming

new surfaces. As a result, LEFM predicts the material at a crack tip will fail when the

mode I SIF, Kz, reaches a critica! intensity called the fracture toughness, Kin. Fracture
toughness is a material property and by definition is not dependent on geometry.

Therefore, the criterion for fracture, or crack propagation, under LEFM, in mode I, is

K t > K m . Standard tests can be performed to measure values of fracture toughness

[ASTM 1997]. The tests subject a standard specimen to pure mode I loading. The

crack growth direction under pure mode I loading is self-similar. In other words, the

crack tip in Figure 3.1 under only mode I loading will extend along the x-axis.
However, it is rare that a crack is subjected to pure mode I loading. More

realistically, the loading will be a combination of all the modes. The mixed mode

loading affects the fracture criterion and crack trajectory. For example, Mode I/
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loading will turn, or kink, the crack away from self-similar crack propagation. There

are several proposed methods to predict the direction of crack growth under mode I

and II loading. The most widely accepted methods are the maximum principal stress

theory [Erdogan et al. 1963], the maximum energy release rate theory [Nuismer 1975],

and the minimum strain energy density theory [Sih 1974]. Due to ease of

implementation and demonstrated accuracy, the maximum principal stress theory will
be used in this thesis. The method is based on two assumptions. First, the crack will

propagate radially from the crack tip. The second is that the crack will propagate in a

direction that is perpendicular to the maximum tangential stress. In other words, the

crack will kink at an angle 0,,, where or00 is a maximum. For mode I and H loading,

assuming plane strain conditions, or00is

o'00 = _ cos _ K t cos" --2-2 ,1 sin0 (3.3)

The direction of crack growth can also be shown to correspond to the principal stress

direction. Setting the partial derivative of c_00with respect to 0 equal to zero, the angle

0,, will be that which satisfies the equation

g t sin0 + K, (3cos0 -1)= 0 (3.4)

From Equation (3.4), it is seen that if K1/equals zero, i.e. pure mode I loading,

then the crack will propagate at an angle equal to zero. Figure 3.2 illustrates

schematically the angle of crack trajectory, 0,,, with respect to the crack front

coordinate system.

Y

Self-similar crack propagation

KI > 0; Kn = 0; 0,,=0

.. .....
Mixed mode crack trajec_'- ....
gl > 0; gn¢ 0; 0,, _: 0 "--

Figure 3.2: Angle of crack trajectory with respect to crack tip.

3.2.1 Fatigue
Cracks have been known to grow when the mode I SIF is less than Ktc. In

these instances, the flaw has been subjected to cyclic loading. Cyclic loading can

produce fatigue crack growth at loads significantly smaller than the fracture toughness

of the material. Figure 3.3 illustrates how cyclic loading is characterized by the tensile

load range, AS, and the load ratio, R. R is defined as the ratio of minimum stress, Smi,,,
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to maximum stress, S,,a,.. which, due to similitude, is equal to the ratio of minimum

mode I SIF, Kmi,,, to maximum mode I SIF, K,,,ax.

R- S,,,, _ K,,,i,, (3.5)
S,,a, K,,a_

Cyclic load histories can also be classified as proportional or non-proportional. When

the ratio of KII to Kt is constant during the loading cycle, the loading is proportional.

Non-proportional is the case when this ratio varies with time.

Stress or SIF[

S rain , K rain

i

!i ii
Time

Figure 3.3: Cyclic load cycle.

There are three regimes of fatigue crack growth as demonstrated in Figure 3.4.

Regime I is related to crack initiation and Small crack effects. As noted on the plot,

there is a threshold value, AKt_, below which fatigue crack growth will not occur. For

AISI 9310 steei, values for AKrh are reported to range from approximately 3.5 ksi*in °'5

~ 12 ksi*in °5 [Binder et al. 1980], [Forman et al. 1984], [Proprieta_ source 1998].

As the stress ratio goes from positive to negative, the threshold valug tncre-ases.

Regime II is-commonly referred to as flae Paris reglme. The work of this thesis

will only focus on crack growth in regime II. Crack initiationl smallcrack effects, and

unstable Crack growth (regime III) Will be ignored. A seminal development in

predicting fatigue crack growth was from [Paris et al. 1961] and [Paris et al. 1963].

They discovered that a crack grows in fatigue at a rate that is a function of AK1. They

proposed that the nature of the curve in regime 17Icould be described by:

da _ C(AK , )" (3.6)
dN

where N is the number of cycles, and C and n were proposed as material constants.

Equation (3.6) is commonly referred to as the Paris model. When the crack growth

rate in regime II is plotted on a log-log scale as a function of AK, the slope of the

curve is n. If the curve is extrapolated to the vertical axis, the intercept is C.
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In regime III, the crack growth is unstable. A crack can grow in fatigue only

when K 1 < K_c. As a result, regime III is bounded on the right by zkK_c.

I

i/I II III

I . .

/ E a s egime
/ V' "-i
I1 ' ', I

AKth dUr(lC log(AK_ )

Figure 3.4: Typical shape of a fatigue crack growth rate plot.

Crack growth in regime II creates striations on the fracture surface in certain

materials under appropriate loading conditions. It has been shown that the spacing

between striations is roughly equal to the macroscopic crack growth rate da/dN

[Forsyth 1962]. In general, ductile alloys, e.g. aluminum alloys, form the most well

developed striations. The material of interest in this thesis, AISI 9310 steel, is capable

of forming striations [Bhattacharyya et al. 1979] [Au et al. 1981] [McElvily et al.

1996]. Au et al. successfully correlated fatigue crack growth rates to fatigue striations

in AISI 9310 steel.

Paris first proposed C as a material property. However, experimental research
has found that C varies as a function of the stress ratio. The crack growth rate

increases as the stress ratio increases. Fatigue crack growth data in regime II from

tests conducted at different stress ratios, plots as shown in the left graph of Figure 3.5.

The spread in the curves is explained by fatigue crack closure [Elber 1971]. In

general, it has been found that a crack will prematurely close prior to the tensile load

being entirely removed. The level of stress at which this premature closing occurs is

Sop (or, due to similitude, Kop). Incorporating fatigue crack closure phenomenon into
Paris' model should collapse the curves into a single line (the right graph of Figure

3.5). This is accomplished by plotting on the abscissa Mqeff (Mf,,ff = Kma x - Kop ),

rather than 2xK. This single curve is referred to as the "intrinsic" fatigue crack growth

rate. More details of fatigue crack closure will be discussed in Chapter 4.
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Figure 3.5: Schematic of fatigue crack growth rate data in Paris regime at different

stress ratios collapsing into a single "intrinsic" curve.

Using Paris' model, the amount of crack growth per cycle for a given cracked

object and load history can be predicted from the SIFs. In computational fracture

mechanics, the FEM or BEM is used to calculate the SIFs. Several ways to calculate

SIFs using numerical methods include the displacement correlation method [Chan et

al. 1970], stiffness derivative [Parks 1974], J-integral [Rice 1968], and the universal

crack closure integral [Singh et al. 1998]. The displacement correlation technique is

used in this work because it relies only on displacement information on the boundary

near the crack tip and because the method is computationally efficient. The numerical

analyses of the spiral bevel pinion are conducted using the boundary element method,

which solves for displacement information only on the boundaries. The displacement

correlation method is computationally efficient since only a single numerical analysis

is adequate to calculate the SIFs, Unlike some of the other techniques that require two.

Additionally, the mode I, II, and HI SIFs are all calculated by the same method.

The displacement correlation method utiIizes the fact that the displacements

near a crack tip are proportional to the SIFs. Underpur e mode ! loading, the opening
dispia_e_ln_nt, Us, is given I_y [Owen e{al_ i-983]

= K_ s/-_7-_"[(9_¢ + 1) sin(O)- sin(_ )] (3.7)u; 4/.1 _ 2re [ -

3-v
where _c - for plane stress

l+v

t¢ = 3-4v for plane strain ....

/3 is the shear modulus of the material, v is Poisson's ratio, and 0 is the angle between

the Iocation of the displacement andthe normal tO the Crack tip, Equation (3.7) can be

rearranged to solve for K 1 = f (u,). Along the crack front 0 =180 ° . Knowing the

material properties (E (elastic modulus) and v), and the crack opening displacement

u;, at a given distance r from the crack front, Kt can be calculated.

usE _2_Kz = 8(l-v:) (3.8)
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Similarly, equations for KH and Km can be written as a function of u,, the displacement

due to in plane shear, and u-_, the displacement due to out of plane shear, respectively.

It is important to note that as r approaches zero, the accuracy of the SITs will decrease

when using the displacement correlation method if the crack front elements are not

capable of representing the singularities at the crack tip.

Crack growth rates are calculated from the SIT information and experimentally

determined fatigue crack growth model parameters. The SIT information is also used

to calculate the angle of propagation, e.g. Equation (3.4).

3.2.2 Example: Two dimensional, mode I dominant fatigue crack growth

simulation with static, proportional loading

The purpose of this example is to demonstrate how fatigue crack predictions

can be performed on a simple two dimensional model. The model assumptions are:

1. The location of applied load is not changing. This will be referred to as

static loading.

2. The loading is proportional.

3. The crack growth can primarily be attributed to mode I opening. In

other words, K t >> K a . This will be referred to as mode I dominant.

4. Crack closure effects will be ignored.
5. LEFM holds.

The method to predict crack trajectories in two dimensions is incremental. A

series of finite element analyses are run which incrementally increase the crack length

by a significant amount in relation to the model's geometry. For a given increase in

crack length, the number of cycles to achieve that amount of growth can be calculated.

For a given propagation step i, there are Ni load cycles associated with it.

The amount of crack growth for one cycle is calculated as a function of the

maximum stress in the load cycle. Because it is assumed the loading is proportional, it

is straightforward to calculate the direction the crack will grow during the cycle using

the maximum principal stress theory. However, there is no proposed method to

calculate the final amount and direction of crack growth during one load cycle if the

ratio Ktl/K_ varies during the cycle, i.e. non-proportional loading.

NASA/CR--2000-210062 27



r Create [geometry model

I
Define

finite element model

Define attributes

•Material properties
,Fixities

,Loads

i=l

Initiate crack

Remesh

a'ecrackf ISo'veequationsI
I

Propagation step: i = i + 1

Load cycles: Nrot,_t= Y_.,Ni

1
Post-process

•Compute SIFs

•Compute da i
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Figure 3.6: Flow chart of process to predict fatigue crack trajectory.

As outlined in Figure 3.6, the process begins with a geometry model. The

geometry model is then discretized into a finite element mesh. Figure 3.7 shows the

finite element mesh for an arbitrary geometry model that will be used for

demonstrative purposes. This particular initial mesh consists entirely of quadratic

eight-noded elements.

Model attributes must be defined next. The material properties are specified

within the finite element program as a Young's Modulus of 29,000 ksi and Poisson's

ratio of 0.25. The thickness of the model is taken to be 1 inch. Boundary conditions
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must also be defined. A cyclic loading history like that shown in Figure 3.3 is
assumed. The minimum appliedtraction is assumedto be zero,and the maximum
appliedtractionis Sin, x = 100 ksi. A tensile traction is applied normal to the top edge.

All of the nodes along the bottom edge are restrained in the vertical direction, and the

far right comer node is restrained in the horizontal direction. If desired, at this stage
the finite element solver could be run to calculate displacements, strains, and stresses

in the uncracked geometry.

I _J_

Figure 3.7: Two dimensional finite element model.

Next, a crack is introduced into the geometry model. With the change in

geometry, the model must be remeshed. However, the damage to the mesh model is

localized, and, therefore, only a small region around the crack must be remeshed. The

mesh around the crack tip is a rosette of eight triangular, six-noded quarter point

elements, Figure 3.8a. The remaining area is meshed with quadratic six-noded

elements. Figure 3.8b shows the initial edge crack and locally remeshed region. The

boundary conditions, material properties, and loads were defined earlier and do not

need to be redefined. At this point, displacements, strains, and stresses are solved for

in the cracked geometry.

A method, such as the displacement correlation technique, is used to compute

the stress intensity factors at the crack tip based on the relative displacements of the
crack faces. Once the SIFs are calculated, Paris' model (Equation (3.6)) can be used

to calculate the amount of crack growth for one load cycle, da/dN. A method, e.g.

maximum principal stress (Equation (3.4)), is used to determine the direction of crack

growth from the calculated SIFs. In most cases, the amount of crack growth for one

load cycle will be on the order of 10 -6 - 10 -4 inches. Since this is significantly smaller

than the geometry features of the gear, it would be inefficient to update the geometry

model for every load cycle. Consequently, a number of load cycles is assumed, e.g.

N i = 2,000 cycles. Finally, the crack in the geometry model is extended by an amount
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da i = (da/dN), *N i , at an angle 0,,, with respect to the self-similar crack trajectory

(Figure 3.2). Again, the model must be remeshed locally, and the process is repeated.

1

....... i

'<LJ i

I f

L J 1
a) Initial crack and quarter point element

rosette

1
i

t

i

i
_ T

_ T

b) Finite element mesh after adding initial
crack

Figure 3.8: Initial edge crack in model.

I

.... F!gur e 3.9: Predicted crack trajectory for model in Figure 3.8.

Fibre 3.9 iS a picture of the predicted crack trajectory for the finite element

model in Figure 3.8. The crack has been incrementally advanced from the initial
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length and orientation through five propagation steps. For the assumed material

properties and loading in this example, the calculated number of load cycles to grow
the crack from the initial length in Figure 3.8 to that in Figure 3.9 is 4,900 cycles.

3.2.3 Example: Three dimensional, mode I dominant fatigue crack growth

simulation with static, proportional loading

The assumptions of the two dimensional example will apply to this three

dimensional example. In three dimensions, the procedure to predict fatigue crack

trajectories is very similar to that in two dimensions. As in two dimensions, the

geometry model must be defined, the mesh created, and the model attributes assigned.

The main complexity with three dimensional crack growth simulations is that there is

not a single crack tip, but rather a three dimensional crack front. For a given three

dimensional crack, there is no longer a single value for the SIF in each mode, but

rather a SIF distribution along the crack front for each mode. In addition, the crack

length might also vary along the crack front.
In this thesis, all of the three dimensional models are boundary element

models. In the boundary element method, the primary variables are load and

displacement. Strains and stresses are secondary variables. The BEM is based on an

integral equation formulation. An advantage of the method is that the number of

unknowns in the equations is proportional to the surface discretization. This is in

contrast to the FEM where the number of unknowns is proportional to the volume

discretization. In computational fracture mechanics when predicting crack trajectories

and remeshing are necessary, an advantage of the BEM is that only the surfaces near

the crack need to be remeshed, as opposed to the entire volume which must be

remeshed when using the FEM. Volume meshing with cracks can be rather difficult;

whereas, surface meshes are straightforward with and without cracks.

crack face

crack face _ _ crack front

Figure 3.10: Schematic of three dimensional crack front.
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There are no closed form solutions to calculate SIF distributions along the

crack front for arbitrary three dimensional cracks, As a result, a conventional

approach to calculate the SIF distribution is to discretize the front into a series of two

dimensional crack tips. For example, the finite plate model presented in Section 3.2.2,

in reality, has a finite width. Therefore, the crack must have a finite width. The crack

front shape might be that shown in Figure 3.10. In this example, the crack width is

equal to the plate thickness.

Discretized three dimensional crack front Two dimensional crack tip

Figure 3.11" Discrete crack front points treated as two dimensional problems.

Next, the crack front is discretized, as shown by the lines intersecting the crack

front in Figure 3.1 1. Once the crack front is discretized, each point is treated as a two

dimensional problem. The two dimensional methods to calculate SIFs are applied at

each discrete point. The discrete point is propagated by an amount and at an angle

uniquely defined by the SIFs associated with that point. Once each discrete crack

front point is propagated individually, a least squares curve fit is performed through

the new discrete crack front points, Figure 3.12. _

A potential difference in the three dimensional approach, as opposed to the two

dimensional method, is that singular crack front elements might not be used along the

crack front. Since the BEM is implemented in this thesis, the volume of the three

dimensional model is not meshed; only the surfaces are meshed. Therefore, elements

that represent the crack tip singularity are not available along the crack front. The

main drawback of this is that some SIF accuracy along the crack front is sacrificed.
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Figure 3.12: Least squares curve fit through new discrete crack front points.

3.3 Fracture Mechanics Software

A suite of fracture mechanics software developed by the Cornell Fracture

Group is used in this thesis [FRANC3D 1999a, 1999b]. The codes were developed to

handle the complexities of three dimensional crack trajectory predictions. OSM is

used to define a three dimensional solid geometry model of an object. The program is

based on defining the surfaces of the model explicitly in Cartesian space. The

boundary of a solid is generated by adjacent surfaces, or faces. Each face of the

boundary element model has a three dimensional local coordinate system associated

with it. In order to define a closed solid, all of the local face normals must point away

from the interior of the solid. The local coordinate system might also be of

significance when defining boundary conditions.

The geometry model is then read into FRANC3D. With FRANC3D, a user

can create a finite element or boundary element mesh based on the geometry model.

Displacement or force/traction boundary conditions must be defined for all the faces

of the solid. The conditions must be specified in all three Cartesian directions with

respect to either the local or the global coordinate system. Material properties are also

assigned to regions of the model using FRANC3D.

Cracks are added to the solid by explicitly defining the vertices, edges, and

faces that model the cracks. A crack has two distinct faces that must be meshed

identically.
As mentioned in Section 3.2.3, a crack front must be discretized prior to

calculating SIFs and to propagating the crack. Within FRANC3D, there are three

options to discretize the crack front. The discrete points can be defined by the mesh

nodes, the midpoints of the elements sides along the crack, or at a user defined number

of equally spaced points along the crack front. The built in feature in FRANC3D to

calculate SIFs uses the displacement correlation technique. The most accurate results

are obtained when a row of four sided elements is used along the crack front. This

will give a set of equally spaced points behind the crack front where the SIFs can be
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evaluated.Additionally, to improvethe performanceof the crackfront elements,the
ratio of theelements'width to lengthshouldbecloseto one[FRANC3D 1999c].

When a crack is propagated,the geometrymodel chan_es. However, the
geometrychangesonly nearthecrack. Therefore,only themeshmodelnearthe new
crack is damagedandrequiresremeshing,The remainderof the geometryandmesh
model is left unchanged.This is adistinctadvantageof FRANC3D.

TheprogramBES is usedto solvefor thedisplacementsandstressesusingthe
boundaryelement technique. FRANC3D is used as a post-processorto view the
deformedshape,stresscontours,andextractnodalinformation.

FRANC3Dusesthesamefunctionalform to interpolatethegeometryandfield
variablevariationsoveranelement.Theform is givenby the associatedelementtype.
In all of the models,only isoparametricthree- and four-noded elementsare used.
Quadraticelementsareavailable;however,basedon the work in [FRANC3D 1999c],
thegain in accuracydoesnotjustify thesignificantincreasein computationaltime.

3.4Chapter Summary

This chapter covered theories of LEFM and fatigue pertinent to modeling crack

growth numerically. Of primary importance is how crack growth rates and trajectory

angles are calculated from SIFs. The maximum principal stress theory will be used to

calculate trajectories under mixed mode loading. In addition, the displacement
correlation method was introduced as a technique to evaluate SIFs. Two dimensional

and three dimensional examples demonstrated how the theories are applied in

numerical simulations, Some features of the software programs FRANC3D, OSM,

and BES that will be used in the simulations were covered. The background provided

|ia Chapter 2 and this chapter will be Utilized in the work Of chapters 4, 5, and 6. The

studies in those chapters cover issues related to predicting three dimensional fatigue

crack trajectories in a spiral bevel gear.

NASA/CR--2000-210062 34



CHAPTER FOUR:

FATIGUE CRACK GROWTH RATES

4.1 Introduction

The goal of this chapter is to determine how highly negative stress ratios affect

the fatigue crack growth rate in a common gear steel, AISI 9310. This is of interest in

the context of gears because the magnitude of compressive stresses in a gear's tooth

root is a function of the rim thickness. If fatigue crack growth rates are highly

sensitive to compression, then crack growth rates may warrant more attention in

designing gears. On the other hand, if the compressive stresses do not alter the fatigue

crack growth rate predictions greatly, than the loading cycle for a gear tooth can be

simplified by ignoring the compressive portion of the cycle.

In Section 4.2, the concept of fatigue crack closure is discussed. This section

shows that crack closure provides a convenient framework within which to understand

the factors that control fatigue crack growth. A material-independent method is

presented for obtaining fatigue crack growth rate data that does not vary with stress

ratio, R. The crack closure approach is extended beyond aluminum alloys, considered

by Elber [1971] and Newman [1981] and discussed in Section 4.2, to steels. Next,

Section 4.3 applies the concepts to AISI 9310 data to obtain an intrinsic fatigue crack

growth model. Section 4.4 demonstrates that in the range of negative R, the effective

stress range, and likewise the crack growth rate, is not highly sensitive to the

magnitude of R.

4.2 Fatigue Crack Closure Concept
Due to the cyclical loading on a gear's tooth, fatigue crack propagation might

occur. The load range, AS, or stress intensity factor range, AK, along with the load

ratio, R, characterizes cyclic loading. Recall, R is defined as the ratio of minimum

stress, Smi,,, to maximum stress, S,_a_, which, due to similitude, is equal to the ratio of

minimum mode I SlY, Kmin, to maximum mode I SlY, Km_., (Equation 3.5).

Lewicki et al. [1997b] found that spur gear teeth can have R-values as low as

-3.0. They also found that the magnitude of R in spur gears is a function of the gear

geometry. As the rim thickness decreases, R becomes more negative due to the

increased bending of the gear rim.

A general interpretation of the crack closure approach is that damage only

occurs during the portion of the load cycle when the crack faces are not in contact.

The majority of the literature's discussion of crack closure covers its effect on crack

growth rates. Since gears have such high load frequencies, crack growth rates are

commonly of secondary interest in the context of gears. The time from detectable

flaw to failure is usually insignificant. However, if the crack growth rate is highly

sensitive to the magnitude of the compressive portion of the load cycle, then crack

growth rates may warrant more attention. On the other hand, if, for negative values of

R, the crack growth rate is relatively insensitive to the magnitude of R, then the effect

of geometry on R need not be the primary concern in gear design. This demonstration

NASA/CR--2000-210062 35



is siguificant in the contextof the o,rerallgoalof this thesis,which is to studyaspects
of geargeometrythataffectdamagetolerance.

It is assumedinitially in this chapterthat the stressesinducedin a gear tooth
under positive (tensile) and negative (compressive)parts of the load cycle are
"proportional." In otherwords, the shapeof the stressintensity factor distribution
alongthe crackfront is thesameunderboth tensileandcompressiveloading. In two
dimensionalanalyses,this is not a concernbecausethe crack only consistsof a tip,
wherethe deformationcanbe tensileonly or compressiveonly, not a combinationof
the two. In threedimensions,however,thedistribution of the loading (deformation)
alongthe crackfront might bedifferent in the compressiveandtensile loadcases. In
the end,whetherthepositive andnegativepartsof the load cycle areproportional is
not of major concern. As will be shownin the remainingsections,damageoccurs
only during thetensileportionof the loadcycle.

Elber [ 1971] observedthatduringunloadingacrackactuallyclosesprior to the
appliedload beingentirely removed. This phenomenonhasbeencalled fatiguecrack
closure. Fatiguecrackclosurealso explainswhy, for a given AK, fatigue testsshow
thecrack_owth rate increasingasR increases. Figure 4. ! shows typical fatigue crack

growth rate data as a function of SIF range [Kurihara et al. 1986]. Kurihara et al.

conducted fatigue tests with 500 MPa class C-Mn steel, which is used in pressure

vessels. The tests covered a wide range of stress ratios from -5.0 to 0.8. Figure 4.1

was obtained by selecting two data points off Kurihara et al.'s plots for each value of
R. The horizontal scatter in the curves is a result of the different R-values. Note that

as R increases, the curves shift to the left, producing an increase in fatigue crack

growth rate for a given AK.

1.00E-02

-0.5 ,,-1

1.00E-03 3_.2_;_ _ 0.5

1.00E-04

47 R=-5

1.00E-05
0.67

1.00E-06 .... r ...... i t-r1-- , ......

I 10 100 I000

AK [MPa*m °5]

Figure 4.i: Fatigue crack growth rate data for pressure vessel steel at various R-values

(data taken from [Kurihara et al. 1986]).
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Crack closure can be attributed to a number of factors. During the opening

portion of a load cycle, the material at the crack tip plastically deforms. As the cycles

repeat, a wake of plastic deformation remains as the crack propagates through the

body. The plastic deformation wake results in a mismatch between the crack faces.

Although not considered here, crack closure can also occur due to differences in the

surface roughness of the crack faces, due to mixed mode loading, or oxidation of the
crack surfaces.

Elber modified Paris' model to account for crack closure. The modification

allows crack propagation to occur only while the crack tip is open. He introduced Sop

as the stress level where the crack first opens during the tensile part of the load cycle.

His equation for the crack propagation rate is:

da

-_ = C (AK _ )" = C (U2d_)" (4.1)

where U, the effective stress range ratio, is defined as

S,,a,. - Sop 1- s _/s....
U - = (4.2)

S,,a ,. -S,,i, ' 1-R

Figure 4.2 illustrates the relationships among various K values. Sop (Kop) is difficult to

measure experimentally. In addition, the value varies with loading conditions. As a

result, Elber developed an empirical relationship between U and R. From this

relationship, Sop (Kop) could be backed out.

K

Figure 4.2: Constant ._6Xdf for different stress ratios.

When da/dN is plotted as a function of ,SJfeff, the scattered curves (due to

different R-values) collapse into a single, "intrinsic" crack growth rate curve. In

crack-closure-based fatigue models, da/dN is a function of 2d_e_. This implies that

crack growth occurs only while the crack tip is open. If K,,a., is kept constant between

various tests with different R-values, then K,,i,, must change. If it can be shown that
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AKe/t- remains nearly constant for various negative R-values, then the portion of the

load cycle when K,,,i _ <_Kop does not contribute to crack growth. Therefore, all

negative R-value cases could be treated in the same manner. The sensitivity of AK,2.

will be investigated in Section 4.4. Figure 4.2 illustrates how AK,,f¢ could remain

constant as Kmm decreases.

Elber performed a series of experimental fatigue tests with sheets of 2024-T3

aluminum alloy. The stress ratio range was -0.1 < R <__0.7. From the tests, he

developed the empirical relationship

U(R) = 0.5 + 0.4R when - 0.1 _<R _<0.7 (4.3)

Elber's U(R) relationship is valid only for 2024-T3 aluminum alloy over the

range of R-values for which he had experimental data. His work inspired many to

develop empirical relationships between U and R for a variety of materials and ranges

of R. Schijve [1988] summarizes several of these empirical relationships for different

alloys and ranges of R. However, it is expensive to develop this relationship

empirically every time one wants to model crack closure in a new material. This led

to attempts to numerically model crack closure [Newman 1976, 1981], [Fleck et al.

1988], [McClung et al. 1989], and [Blom et al. 1985]. Through the thirty plus years

of research related to crack closure, it has been found that the amount of crack closure

is dependent on many variables. Specimen size, specimen geometry, crack length,

applied stress state, and prior loading conditions all affect the magnitude of Sop.

Newman's work attempts to incorporate all of these factors.

Newman developed and applied a hybrid analytical/numerical crack closure

model that simulated plane strain and plane stress conditions. He successfully

matched crack growth rates under constant-amplitude loading from his analytical

model to experimental data. The material he focused on initially was 2219-T851

aluminum alloy. The model has since been applied to a variety of metals. Newman's

model is the most comprehensive and has been successfully validated against

experiments. As a result, his model will be utilized in this thesis.

All variables in Equation (4.2) are defined immediately from the loading conditions

with the exception of Sop. To find an expression for Sop/Sm_x, Newman [1984] fit

equations to his numerical results for 2043-T3 aluminum alloy over a large range of R-
values and load levels. He worked in terms of applied loads, but due to similitude, S

in his expressions can be replaced with K, giving:

Kop
- A o +AtR + A2 R2 + A3R 3

when K op

Kop _ ,4o + AIR
_qlax

>_Kmi,,. The coefficients Ao - A3 are:

A o

for R > 0 (4.4a)

for - 1 < R < 0 (4.4b)

)F ( mo]l':= (0.825 - 0.34t¢ + 0.05K "2 COS
L ( 2Oo)1

(4.5)
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A_ = (0.415_¢ - 0.0711¢2) S"'a"
O"0

A 2 = 1 - A 0 - A1 - A3

A 3 = 2A 0 + AI - 1

t¢ is a constraint factor taking on a lower bound of 1 for plane stress conditions and an

upper bound value of 3 to simulate plane strain conditions. The flow stress, or0, is the

average between the uniaxial yield stress and the uniaxial ultimate tensile strength of

the material.
Because Newman's model for Kop is a function of material constants (o'0), R,

and n', it is applicable for any fatigue crack where LEFM holds and the loading

conditions and material properties are known. Figure 4.3 is an example of how the

curves in Figure 4.1 collapse into an intrinsic curve when crack closure is taken into

account. Equations (4.4) and (4.5) are used to calculate AKop. U is calculated using

Equation (4.2). 5

1.00E-02 -J

2*da/dN (R---O) "_... da/dN (R=0)

1 !o, • •

._ --_ R=-5

1.00E-03 i " _ R=-3
05*d /dN (R O)_' "-*- R=-2

_R=-I

",I-- R=-0.5
1.00E-04

_, -4- R=-0.33

-" 1 -'+- R=0

1.00E-05 _ _R=0.67

--*- R=0.8

l
1.00E-06 ! .......

1 10 100 1000

M_'e_q[MPa*m°'5]

Figure 4.3: Intrinsic fatigue crack growth rate data for pressure vessel steel using

Newman's equations for AKe/y; _" = 1 (using data taken from [Kurihara et al. 1986]).

The crack tip condition in the fatigue test specimen Kurihara et al. used, a thin

plate with a center crack, is best described by plane stress. Therefore, a value of

_¢= 1 was selected for the preliminary graphs. _ was then increased, and the amount

s Note that Newman claims Equation (4.4b) is valid for negative R-values greater than or equal to -1.
However, Kurihara et al.'s data extends to -5.0. Equation (4.4b) was used for the cases when R = -5.0,

-3.0, and -2.0. Figure 4.3 illustrates, at least for this case, the equation can also hold for these low R-

values.
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of correlation between the curves was visually inspected. As _c increased, the curves
became more scattered, validating the choice of Ic -- 1.

The equation of a line in Figure 4.3 is given by:

In Figures 4.1 and 4.3, the slope for a given curve (R-value) is uniquely defined by the

data points. According to the crack growth models, all of the curves should have the

same slope. Ideally, this would be the case for the plots in Figure 4.3. The relatively
small scatter in the magnitude of the slopes at different R-values is attributed to scatter
in the experimental results.

Figure 4.3 includes the intrinsic curve predicted by the intrinsic R = 0 data.

This curve falls roughly in the middle of the predicted curves. To give an idea of the

scatter in the curves, the figure also includes lines corresponding to one half and two

times the crack growth rate for R = 0. All of the predicted intrinsic curves fall into

this envelope. As a result, it is concluded that the Mfeff equations produce good
correlation.

These results with 500 MPa pressure vessel steel demonstrate that an intrinsic

fatigue crack growth rate curve can be obtained using Newman's material-independent

model to account for crack closure. It is also shown that a possibility exists to extend

the model beyond the range of R _>-1. Consequently, in Section 4.3 the model will

be applied to AISI 9310 steel to determine how negative R-values influence crack
propagation rates.

4.3 Application of Newman's Model to AISI 9310 Steel

An open literature search for fatigue crack growth rate data for AISI 9310 steel

at various R-values revealed little published information. A report by Au et al. [1981]
contains the most information. Au et al. performed tests in different environments at

various R-values and frequencies for carburized and noncarburized AISI 9310 steel.

Because they were investigating the correlation between fatigue striations and crack

growth rates, only two tests were performed on noncarburized steel in the same

environment and at the same load frequency but at different R-values. The load levels

used in the tests were not reported. When their measured fatigue crack growth rates at

R -- 0.05 and 0.5 are plotted against Mr, there is very little scatter in the curves. This

suggests that the crack growth rate is not sensitive to R or that the applied loads were

high enough such that Kop <_K,,,,. Since the objective of this study is to correlate

fatigue crack growth rate data at different R-values, including the negative R regime,
Au et al.'s data is inadequate.

Additional fatigue test data for AISI 9310 was provided by a helicopter

manufacturer on the condition that the data's source not be identified. Data points are
extracted from the fatigue crack growth rate curves obtained from tests in two

different environments. Figure 4.4 shows growth rates for AISI 9310 steel in room

temperature air for R =-1, 0.05, and 0.5. The curves in Figure 4.5 are obtained by

extracting data points from fatigue crack growth rate tests in 250 ° oil for R = -1, 0.01,

and 0.5. Table 4.1 summarizes the slopes and intercepts for the various curves.

7

NASA/CR--2000-210062 40



1.00E-03

1.00E-04

1.00E-05

1.00E-06

1.00E-07

1.00E-08

1 10 100

AK [ksi*in °5]

Figure 4.4: Fatigue crack growth rate data for AISI 9310 steel in room temperature air.
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Figure 4.5: Fatigue crack growth rate data for AISI 9310 steel in 250 ° oil.
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Table 4.1: Slope and intercept of curves in Figures 4.4 and 4.5.

Test n

R=-I (Air) 3.3

R = 0.05 (Air) 3.5

R = 0.5 (Air) 3.9

C

[(in/cycle)/(ksi* in°5) n]
6.4e-12

7.3e- 11

5.3e-11

R = -1 (Oil) 3.2 1.1e-11

R = 0.01 (Oil) 3.2 9.9e-11

R = 0.5 (Oil) 3.8 7.9e- 11

For a given R, the n values are similar between the two environments. The

effect of the environment can be see in the variations of C. C is consistently larger in

the heated oil environment. A larger C will result in faster growth rates. However, the

environment effect will not be considered in this investigation.

Similar to the pressure vessel steel analyses, da/dN versus 2ug,,ff plots are

generated using Equations (4.2), (4.4), and (4.5). A value of tc = 1 best describes the
condition at the crack tip in the test specimen. Figures 4.6 and 4.7 illustrate the

various curves collapsing into an intrinsic fatigue crack growth rate curve.
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Figure 4.6: Intrinsic fatigue crack growth rate for AISI 9310 in room temperature air,
k'=l.

Figures 4.4 through 4.7 demonstrate that Newman's crack closure model
accounts for the scatter in fatigue crack growth rates at different stress ratios in AISI

9310 steel. Table 4.2 contains the slopes and vertical intercepts from the lines in the

figures. In addition, a linear least squares curve is fit through the data in Figures 4.6

and 4.7. The slope and vertical intercept from each curve fit are also included in the
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table. These curve fit values will be used in the crack growth rate models for the

numerical analyses. Crack closure concepts will now be extended to investigate the

sensitivity of fatigue crack growth rates to low R-values.

1.00E-03

q

-i
17=3.36

1.00E-04 _ C *=7.44E-10

1.00E-05

_ 1.00E-06 [

1.00E-07

1.00E-08

I

I

--R=-I

R=0.01

---*- R=0.5

_Linear Curve Fit

, , , i d , i , , i

10 100

AKef: [ksi*in °'5]

Figure 4.7: Intrinsic fatigue crack growth rate for AISI 9310 in 250 ° oil; I¢ = 1.

Table 4.2: Intrinsic and non-intrinsic fatigue crack growth rate parameters.
C C*

Test n [(in/cycle)/(ksi,ino.5).] [(in/cycle)/(ksi,inO :).]

R = -1 (Air) 3.3 6.4e-12 6.30e-10

R = 0.05 (Air) 3.5 7.3e-11 8.80e-10

R = 0.5 (Air) 3.9 5.3e-11 1.98e-10

R --I (Oil) 3.2 1.1e-11 8.52e-10

R = 0.01 (Oil) 3.2 9.9e-11 1.09e-9

R=0.5 (Oil) 3.8 7.9e-11 2.87e-10

Curve Fit Air 3.6 NA 6 4.26e- 10

Curve Fit Oil 3.4 NA 1 7.44e-10

6
Not Applicable
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4.4 Sensitivity of Growth Rate to Low R

Table 4.3 contains results from calculations of AKeff at different R-values using

Equations (4.1), (4.2), (4.4), and (4.5). Constant values for Kma,, _', and Smax/c7o are
assumed.

Table 4.3: Calculations to find AKe_ over a range of R-values for a constant K,,,_x; SIF
units are ksi*in °5

R

0.705

0.700

0.505

0.500

0.255

0.250

0.005

-0.495

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.000 1.000

1.000

-0.500

-1.995

-2.000

-2.995

1.000

1.000

1.000

1.000

1.000

1.000

-3.000 1.000

s,,°xloo
0.100 10.000

0.100 10.000

0.100 10.000

0.100 10.000

0.100 10.000

0.100 10.000

0.100 10.000

0.100 10.000

0.100 10.000

0.100 10.000

0.100

0.100 10.000

0.100 10.000

0.100 10.000

0.100 10.000

0.100 10.000

Kmin AK

7.050 2.950

7.000 3.000

5.050 4.950

5.000 5.000

2.550 7.450

2.500 7.500

0.050 9.950

0.000 10.000

-4.950 t 4.950

-5.00 15.000

10.000 -9.950 19.950

-10.000 20.000

-19.950 29.950

-20.000 30.000

-29.950 39.950

-30.000 40.000

U

0.825

0.822

0.716

0.713

0.589

0.587

0.474

0.472

0.327

0.326

0.254

0.253

0.180

0.180

0.144

0.144

AKe£f
2.434

2.467

3.542

3.565

4.388

4.399

4.714

4.716

4.886

4.888

5.058

5.060

5.402

5.404

5.746

5.748

The crack growth rate is calculated in Table 4.4 based on the effective SIF data
in Table 4.3. C and n are assumed to be 7.44e-10 (in/cycle)/(ksi*in°'5) '' and 3.4,

respectively. These values are taken from the curve fit to the intrinsic growth rate data
for the AISI 9310 steel tests conducted in heated oil. da/dN as a function of R is

plotted in Figure 4.8.

The curve in Figure 4.8 shows that the crack growth rate in the negative R

regime is less sensitive to variations in R compared to the positive R regime. Between

R equal to zero and -3.00, the crack growth rate varies by a factor of 1.96. In a fatigue

context, a difference of this order of magnitude is acceptable. As a result, one can

conclude that when modeling fatigue crack growth, AK,._, or likewise Kop or da/dN,

does not change significantly for R < 0. Therefore, the magnitude of R is not a useful

parameter to characterize damage evolution in gears. In the context of designing gear

geometry to be damage tolerant, a primary concern need not be how aspects of gear

geometry affect R.
It has been shown that when crack closure is taken into account there is not a

significant change in the crack growth rates for negative R-values. This result will be

utilized in the numerical analyses discussed in Chapters 5 and 7. The load ratio will

be taken as R = 0 under the assumption that, if R < 0, the general results and
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conclusions would still be valid. This is a simplification to the loading cycle and

method.

Table 4.4: Crack growth rate calculations for a wide range of R-values taking into

account crack closure effects. The )ercent change in da/dN is due to _ = 0.005.

0.705 2.434

0.700 2.467

0.505 3.542

0.500 3.565

0.255 4.388

0.250 4.399

0.005 4.714

0.000 4.716

-0.495 4.886

-0.500 4.888

-0.955 5.058
-1.000 5.O6O

-1.995 5.402

-2.000 5.404

-2.995 5.746

-3.000 5.748

daJdN

(in�cycle
10 .7)
0.153

0.160

0.549

0.561

1.136

1.146

1.1449

1.451

1.637

1.639

1.841

1.844

2.303

2.306

2.841

2.844

% Change
x daldN

4.446

2.135

0.873

0.130

0.120

0.116

0.108

0.102

daMN 3.00E-07

2.50E-07

2.00E-07

1.00E-07

5.00E-08

0.50 1.00
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4.5 Chapter Summary
Highlights of this chapter can be summarized as follows:

• The crack closure concept and Newman's model were presented. It was shown

that the model predicts that fatigue damage occurs only during the portion of the

load cycle when the crack faces are not in contact.

• Newman's crack closure model was applied to empirical data for crack growth

rates of a pressure vessel steel. It was shown that crack closure explains well the

apparent dependence of crack growth rates on R. In fact, the material has an

intrinsic crack growth rate. R is a parameter that determines during what portion

of the load range the crack faces are not in contact. This range is called the

effective stress intensity factor range.

• Newman's model was applied to AISI 9310 steel, a typical steel used for gears.

There was much less crack growth data available for this steel as compared to the

pressure vessel steel. Nevertheless, it was shown that the crack closure model
works for this small data set.

• It was demonstrated that, in the regime of negative R-values, the model predicts

that the crack growth rates as a function of the effective stress intensity factors are

only a weak function of the magnitude of R.

• The observation made in this chapter that crack growth rates are not highly

sensitive to R in the negative R-regime will be used in Chapter 5 when modeling

the load history.
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CHAPTER FIVE:
PREDICTING FATIGUE CRACK GROWTH

TRAJECTORIES IN THREE DIMENSIONS UNDER

MOVING, NON-PROPORTIONAL LOADS

5.1 Introduction

Chapter 5 covers numerical modeling issues related to predicting fatigue crack

growth trajectories in three dimensions in a spiral bevel pinion. The goal of this

chapter is to model crack growth under realistic operating conditions. As covered in

Section 1.2, most previous work in the area of predicting crack trajectories in gears

assumed one fixed load location. The location was usually the HPSTC. However, in

operation, spiral bevel gears are subjected to a load moving in three dimensions. The

fixed location loading, therefore, could lead to incorrect three dimensional trajectories.

A boundary element model of the OH-58 spiral bevel pinion is presented in

Section 5.2. The tooth coordinates and a dimensioned drawing of the pinion were

provided by NASA/GRC, along with the coordinates for discrete elliptical contact

areas along a spiral bevel gear tooth. OSM/FRANC3D is used to create the model

from these data. Studies are conducted to determine the smallest model that still

achieves accurate SIF results. Once this model is defined, initial analyses for the

discrete load cases are conducted. The SIF history for an initial crack subjected to the

moving load is presented in Section 5.3.

Section 5.4 develops a method to predict three dimensional fatigue crack

growth trajectories under a moving load. The method increments a set of discrete

points along the crack front for each step in the load cycle to find the total amount of

extension and final angle of growth after fifteen load steps (1 load cycle). The

propagation path for each point is then approximated with a straight line. A number of

cycles are specified, and the crack front is advanced an amount equal to the crack

extension for one cycle times the number of assumed cycles, and at the angle

calculated for one cycle. Next, a curve is fit through the new crack tip locations to

define the new crack front. The FRANC3D geometry model is updated, and the

process is repeated.

Finally, in Section 5.5 the proposed moving load crack propagation method is

implemented to predict fatigue crack growth trajectories in the OH-58 spiral bevel

pinion.

5.2 BEM Model

A boundary element model of the OH-58 spiral bevel pinion was built with

OSM/FRANC3D. The Cartesian coordinates for a tooth surface, tooth profile, and

fillet curve were provided by NASA/GRC. The data were generated automatically

from a program that models the gear cutting process along with the gear kinematics.

All points on the generated tooth surface are points of tangency to the cutter surface

during the manufacturing process [Litvin 1991]. A primary motivation for developing

the tooth geometry program was to generate data for a three dimensional finite

element analysis. This program's output was adapted to develop a boundary element
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model for this thesis. The remainder of the pinion solid model was built from a

drawing of the pinion. The basic shape of the shafts and gear rim were modeled.

Some subtle details of the pinion drawing were ignored in cases where the geometry

would complicate the geometry model and have negligible effects on the computed

SIFs. The surfaces of the solid model were meshed using three- and four-noded

elements. Figure 5.1 contains three views of a typical boundary element model (recall

that the meshes shown in the figures are surface meshes). The volume of the gear is

not meshed. The conical shape of the gear rim and the cylindrical shape of the shafts

are seen best in Figure 5.lb. As seen in Figures 5.1a and 5.1c, three of the nineteen

teeth of the pinion are modeled explicitly. Section 5.2.2 discusses studies to verify the

accuracy of the three teeth model.

_, Fixed displacement

/_,_?_.__y_ boundary conditions

"'_ "Short Oe_' "
"I_A shaft

a) Overall view of full model

_//_- Tooth

Gear rim

b) Section A-A from (a): profile of shaft

NAS A/CR---2000-210062 48



31t / /

c) Close up view of teeth

Figure 5.1 : Typical boundary element model of OH-58 pinion.

In operation, the input torque is applied at the end of the pinion's long shaft.

The small shaft sits on roller bearings. When the torque is applied, the gear rotates

and the teeth of the pinion successively contact the gear's teeth. When contact occurs,

load is transferred across the teeth. The boundary conditions shown in Figure 5. l a

model these operating conditions. This model will be referred to as the full model.

The face patches at the end of the long shaft are fixed in all directions. The

displacements on the surfaces of the smaller shaft are restrained in the local normal

direction. Though not explicitly shown in Figure 5.1, contact areas are modeled as

distinct face patches on the middle tooth. Traction normal to the patch is defined

which equals the load that is transferred across the contacting teeth for a given input

torque and rotation angle. More detail on how these contact patches are defined is

given in the next section.

5.2.1 Loading Simplifications

The meshing of the gear and pinion is a continuous process. The magnitude of

force between the gear teeth varies during the meshing as adjacent teeth come into and

out of contact. Figure 2.8 is a schematic of the continuous process that has been

discretized into fifteen load steps.

In order to perform numerical crack propagation studies of the pinion, the

continuous contact between the teeth is discretized into fifteen contact patches, or load

steps: four double tooth contact patches, seven single tooth contact patches, followed

by four more double tooth contact patches. Each load step is a unique face patch in

the boundary element model. The load steps will be referred to as numbers one

through fifteen, corresponding to the Patches from the gear root to the top land,

respectively. This is consistent with the progression of contact area along a pinion

tooth from the root toward the top. One progression through the fifteen load steps is

one load cycle on the tooth. One rotation of the gear results in one load cycle on each

tooth.
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The location and size of the fifteen discrete contact patches were provided by

NASA/GRC. The data were determined numerically by a procedure similar to that

described by Litvin et al. [1991]. The mean point of contact between the gears is

taken as the center of the ellipse. Hertzian contact theory along with the applied

torque level is used to determine the width of the ellipse. The patches were calculated

for operating conditions of 300 horsepower, 6060 rotations per minutes, and 3120 in-

lb torque. These conditions are approximating the 100% design load condition, which

is defined as 3099 in-lb torque.

/

/

/

Figure 5.2: Contact ellipses defined at the geometry level in the numerical models.
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In the BEM model, theshapeof a contactellipse is approximatedby straight
linesconnectingthe axes'endpoints. The straightline approximationis valid because
Saint Venant's principle holds; as long as the total applied forces and resulting
momentsarekept constant,theelliptical shapeof thetractioncanbeapproximatedby
a patchwith straightsideswithout alteringthestressdistributionalongthecrackfront.
Frictional forces are neglected,and, consequently,the traction is constantover the
patch. Eachpatchhasauniquemagnitudeof traction.

The four figures in Figure 5.2 demonstratehow thetraction patchesarebuilt
into the model geometry. The purposeof the models is to calculateSIFs from all
fifteen static load cases. The combinationof all fifteen SIF distributionsrepresents
one load cycle on the tooth. Figure 5.2 shows how a single BEM model can
incorporatemultiple loadcases.Not all of thecontactellipsescanbemodeledin one
BEM modelbecausethere is overlapbetweenthe ellipses. The multiple load case
featureminimizesthecomputationaltime. For example,theboundaryelementmodel
for loadcasesone, five, eight, andthirteen is virtually identical. The only difference
betweenthemis theboundaryconditions. Hence,with themultiple loadcasefeature,
thetwo mostcomputationallyexpensivestepsof theboundaryelementsolver, setting
up theboundaryintegralequationsandfactoringthestiffnessmatrix,occuronly once.
The differentboundaryconditionsarethenappliedindividually, andthecorresponding
equationsaresolvedfor theunknowndisplacementsandtractionsfor eachloadcase.

5.2.2 Influence of Model Size on SIF Accuracy

The fewer the number of elements, or unknowns, in a boundary element

model, the less computationally intensive the model is. Minimizing the number of

elements can primarily be accomplished by 1) using a coarser mesh with larger

elements or 2) by modeling less of the geometry of the solid. A disadvantage of the

first option is the accuracy of the solution is sacrificed. The elements used in all of the

studies in this thesis are linear. Therefore, only linear variations in displacement

across an element can be represented. Likewise, the geometry is approximated by a

series of linear segments. Because the geometry of the pinion is complex with

significant amounts of curvature, larger elements do not represent the geometry

adequately. As a result, this option is disregarded, and the second option, simplifying

the model, is considered.

Simplifying the model also has drawbacks. The smaller the portion of the

pinion modeled, the less accurate the representation of the boundary conditions. Three

simplified models are investigated. The first simplification, Figure 5.3, is to ignore the

long shaft in the full model. The new faces that are created when the long shaft is

disregarded are restrained in all directions. Secondly, the smaller shaft is removed,

Figure 5.4. The boundary conditions on the heel end are the same as simplification

one, and the new faces on the toe end are set to traction free. The final simplification

is to cut the rim of the pinion in half, Figure 5.5. The boundary conditions for this

model are the same as the second simplification, with the addition of roller boundary

conditions (displacement in the direction of the local normal set to zero) applied to the
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new faces. The boundary conditions for each model are chosen because they most

closely match those of the full model (Figure 5.1 a).

mll___ fixed

J

Figure 5.3: Simplified model 1" ignore long shaft.

In each of the simplified models, the flexibility of the pinion changes. When

an identical crack is introduced into all of the models, the SIFs might vary from model

to model. To determine whether a simplified model is valid, the SIFs from the

simplified models are compared to the full model's SIFs for identical cracks. It is

assumed that the full model most accurately represents the operating conditions and

loading paths.

free fixed

Figure 5.4: Simplified model 2: ignore both shafts.
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free xed

rollers

Figure 5.5: Simplified model 3: ignore both shafts and half of gear rim.

A semi-elliptical crack is introduced in the root of the middle tooth in each

model. The crack is 0.64 inches long and 0.14 inches deep. A simplified load is

applied to the middle tooth over the middle third of the tooth length and tooth height.

The shape of the traction patch is rectangular, and the traction across the patch is

constant. The shape and location of the traction patch is different from those

described in Section 5.2.1. However, the difference is not important because the intent

is to analyze differences in SIFs between models after changing one variable and

keeping all the rest of the model parameters constant. To achieve consistency between

all the models, the mesh in the region of the crack and load patch is identical.

The SIFs increase on average by 7%, 8%, and 11% with respect to the full

model's SIFs for simplification one, two, and three, respectively. In a fatigue growth

rate context, changes of this magnitude are significant. Recall that the crack growth

rate is proportional to KI raised to a power (Equation (3.6)). For AISI 9310, the

magnitude of the exponent is approximately 3.4. Consequently, seemingly small

changes in the SIFs have dramatic effects on the crack growth rate predictions. It is

concluded from this study that the full model should be used for all trajectory

predictions.

To verify that only explicitly modeling three teeth yields accurate results, a

nine teeth model is analyzed. If the SIFs between the three teeth and nine teeth

models are similar, then it can be concluded that not all of the nineteen teeth of the

pinion need to be modeled.

An edge crack is introduced in the three and nine teeth models, in the middle

of the tooth length, in the root of the concave side of the middle tooth. The crack

shape is semi-elliptical, and is 0.125 inches long and 0.05 inches deep. An effort is

made to keep the meshes between the two models identical.

The difference in SIF distribution under load steps 1, 5, and 8 is investigated.

As shown in Figure 5.6, the percent difference in Kl between the two models for all

three load cases is below 5%. The_.a_bsolute magnitude of KII for both models and all

load cases is significantly smaller than KI. Consequently, a small variation in Kn

appears as a large percent difference between the models. Instead of percent

differences, Figure 5.7 shows the absolute Kn values for all the loads and models. It is

evident from the figures that the three teeth and nine teeth models yield similar results,
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leading to the conclusion that the three teeth model is sufficient for the trajectory

prediction analyses.

i
[

8 4

i
6 _ Load 8

•6 2 -'-- A---_ _- _-

_ -2 Crack front position

@ 1 Load 5 (Orientation: heel to toe)

!
-6 _

i
-8 4

-10

Figure 5.6: Percent difference in K_ between three teeth and nine teeth models for load

cases one, five, and eight. Crack front position one corresponds to the heel end of the
crack front.

2000

10.] 
_b Load 5

Load 1

------*.--3 Teeth all

--- 9Teeth /9 L°ad5

0 T _ 6 7 8 9 10 11 12 13 14 IJ/_lSS/_9

o=_ k \ /w jr, jr.- Crack front position

•_-looo _ ( " " :

e.,. Load Orientation heel to toe)

_2

-2000

-3000

-40OO

Figure 5.7: Ku distribution for three teeth and nine teeth models for load cases one,

five, and eight.

5.3 Initial SIF History Under Moving Load
To simulate the moving load during one load cycle on a pinion's tooth, fifteen

static BEM analyses are performed. Each analysis represents oqe of the fifteen
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discrete time steps as the contact area moves up the pinion tooth, as discussed in

Section 5.2.1. Recall these contact ellipses are defined for a full design load input

torque of 3120 in-lb. The full pinion boundary element model is used, Figure 5.1. A

semi-elliptical edge crack is introduced into the root of the middle tooth on the

concave side. The crack is located approximately in the middle of the tooth length.

The dimensions are 0.125 inches long by 0.050 inches deep. The crack is oriented

approximately normal to the surface.

Each load step produces a unique SIF distribution along the crack front. The

SIF distribution changes between load steps because the load position and magnitude

varies from step to step. Figure 5.8 shows the mode I SIF distribution for the first

eleven load steps, the initial four double tooth contact load steps followed by the seven

single tooth contact load steps. The second stage of double tooth contact, load steps

twelve through fifteen, are omitted from the figure to simplify it. Modes H and HI

SIFs are plotted similarly in Appendix A.

The four bottom curves in Figure 5.8 are the SIFs under double tooth contact.

The remaining seven curves are the SIFs under the single tooth contact load steps.

The bottom most of the seven curves corresponds to load five. The topmost curve is

the result from load eleven, the last single tooth contact step. The total applied force

for each single tooth contact load step is roughly equivalent. However, as the load

step number increases, the SIF curves shift up. This is explained by the fact that the

locations of the contact patches are progressing up the pinion tooth. The change in

location creates a greater moment arm. As a result, the displacements, and likewise

SIFs, in the tooth root will thus increase.

18000

16000

14000

12000

:_ 10000

_.

_2 8ooo

6000

4000

2000

1 6 11 16 21 26 31 36 41 46 51 56 61

Crack front position

(Orientation: heel to toe)

Load I

Load 2

Load 3

Load 4

Load 5

Load 6

--+- Load 7

Load 8

Load 9

Load 10

Load 11

Figure 5.8: Mode I SIF distribution for load steps one through eleven.
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Another approach to examine the data is to plot the SIF history for each point

along the crack front. Figure 5.9 shows the SIF history for point 29 in Figure 5.8

(roughly the midpoint of the crack front). The magnitude of K1, KH, and Km is plotted

as a function of time, or load step. The figure also includes Kop, which was calculated

using Newman's crack closure equations described by Equations (4.1), (4.2), (4.4),

and (4.5).

10000 i

6000 f- \

"-" 4000 !

0__ i_6_ 17

i \ _ Load Step

-2000 _j _K II

-4000

Figure 5.9: Typical SIF history for one load cycle for one point on crack front.

When the individual points in Figure 5.9 are connected with straight lines, the
plots rei_resent the loading cycle onthe tooth. The minimum load has been taken to be

zero. In actuality, the minimum load in the tooth root might be compressive. When a

tooth is loaded, compressive stresses could result in the root of the convex side.

Depending on the magnitude of these stresses, they may extend into the concave root

of the adjacent tooth. However, Chapter 4 demonstrated that the crack growth rates do

not vary significantly for negative R-values when crack closure is taken into account.

Therefore, the 10_id cycle is modeled asReci'uaiszero, ke. K ln, in = g llmi n = K lllmin = O.

The difference in the single tooth and double tooth contact loads is evident in

the mode I SIFs. The plateaus in the curve correspond to the two contact stages. Kt is

significantly larger during single tooth contact (load steps 5-11) compared to the

double tooth contact stages (load steps 1-4 and 12-15). The magnitudes of/(1 are

significantly greater than Kin. As a result, it will be assumed that mode HI does not

contribute to the crack growth.

Based on gear theory, the curves in Figure 5.9 should be continuous and

smooth. The continuous curves would most likely show a large increase in slope as

the loading progresses from double tooth contact to single tooth contact. One can
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imagine that as the number of discrete load steps increases, the curves in Figure 5.9
will become smoother. However, due to transmission error and noise, it is known that

the curves in reality are neither continuous nor smooth. Therefore, it is assumed that

the fifteen load steps are sufficient to approximate the true loading conditions.

The moving load on the pinion's tooth is non-proportional; the ratio of Kit to KI

changes during the load cycle, Figure 5.10. Consequently, the method to propagate a

three dimensional crack described in Section 3.2.3 can not be used. That method

assumed proportional loading, which results in a constant kink angle for the load

cycle. Since the ratio is changing in the spiral-bevel gear tooth, the predicted angle of

propagation during the load cycle changes. A method to determine how a crack would

grow under this type of loading is required and is proposed in Section 5.4.

0.2

i i i i _ t t J i i p

-0.2 "_ 3
-0.4

-0.6

-0.8

-1

-1.2 -

13 14 15

Load Step

Figure 5.10: Typical Kit to KI ratio under moving load.

The KH to K_ ratio also indicates which loading mode is driving the crack

growth. Mode I dominant fatigue crack growth is associated with smaller ratios. Qian

et al. [ 1996] studied mixed mode I and II crack growth in four point bend specimens.

They selected the test specimen geometries from FEM analyses that considered

various crack lengths and orientations to achieve different Ktl to KI ratios. From the

analyses, they selected five different geometries with KidKt values of 0, 0.262, 0.701,

1.812, and 16.725. The ratios covered crack growth mechanisms of pure mode I,

mode I dominant, balanced mode I and II effects, mode II dominant, and highly mode

II dominant, respectively. Using these ratios as guidelines, the gear situation can be

characterized as balanced mode ! and !I effects during the earlier stages of the cycle to

mode I dominant crack growth during the later stages of the cycle. However, it will be

assumed that the fatigue crack growth is driven by mode I.
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5.4 Method for Three Dimensional Fatigue Crack Growth Predictions

Under Non-Proportional Loading
As shown in Section 5.3, a crack in a spiral bevel pinion tooth is subjected to

non-proportional loading. As a result, conventional methods to predict crack growth

trajectories in three dimensions are not adequate. A literature review of non-

proportional fatigue crack growth revealed only a few methods that were applicable to

the gear model; Section 5.4.1 is a summary of relevant work. A method to predict

three dimensional fatigue crack trajectories under non-proportional loads is proposed

in Section 5.4.2. Section 5.4.3 summarizes the approximations of the method.

5.4.1 Literature Review

In the literature related to non-proportional fatigue crack growth, the majority

of the work is experimental. The limited amount of numerical work is related to

predicting crack growth rates and fatigue life. The numerical work is also largely

confined to two dimensional analyses. Schijve [1996] gives an overview of methods

and research related to predicting fatigue life and crack growth. There is no mention

of predicting crack trajectories in non-proportional loading scenarios. Crack

trajectories are of primary importance in the context of gears because the trajectory

determines whether the failure mode will be catastrophic. The number of cycles to

failure is of secondary importance because the high loading frequency on a gear's

tooth results in very short times from crack initiation to tooth or rim failure.

Bold et al. [1992] is the most extensive report covering fatigue crack growth in

steels under mixed mode I and II loading. They give experimental results from non-

proportional mode I and n tests, and compare the maximum tangential stress theory

(pure mode I) and maximum shear stress (pure mode II) theory for predicting kink

angles to experimental results. However, their work contains no theoretical

predictions for mixed mode. Bower et al. [1994] considered brittle fracture under a

moving contact load. They incrementally advanced the load and evaluated the SIFs at

each stage of contact. If the SIFs met their fracture criterion, then the crack was

propagated based on the mode I and II SIFs for that load position using the maximum

principal stress criterion. Their approach incorporates non-proportional loading in an

incremental manner; however, the work is limited to brittle fracture, does not include

fatigue, and does not include three dimensional effects.

Hourlier et at.'s [1985] focus was to determine which of three theories

predicted trajectories closest to experimental data for non-proportional loading. They

worked in terms of kl, which is the mode I stress intensity factor for a small advance of

the crack at an angle 0. The three theories investigated were 1) direction in which kl is

a maximum, 2) direction where Akl is a maximum, and 3) direction of maximum

fatigue growth rate da/dN. The rate is calculated assuming a mode I dominant growth

mechanism and is a function of ki,,_.¥(0) and Ak1(0). Their work found that 1) was the

most inaccurate method. In general, the maximum da/dN method was found to best

match experimental results. Hourtier et al.'s work is not practical for the purposes of

this thesis primarily because it requires one to express the moving load and kl in closed

forms as functions of time and 0 in order to find the angle corresponding to the

maximum da/dN.
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Three dimensional finite element analyses have been performed to simulate the

wheel position over a railroad track containing a crack [Olzak et al. 1993]. The rail

model is analyzed for consecutive stages of wheel position and the SIFs are calculated

for each stage. However, Olzak et al. did not propagate the crack. Their primary goal

was to determine what happens to the crack displacement and contact shape when the

load is directly over the crack. In the case of the spiral bevel gear, the load will most

likely never be directly over the crack and their findings are not applicable.

The most significant work was done by Panasyuk et al. [1995]. They

numerically modeled and propagated a two dimensional edge crack under a moving

contact load. The maximum principal stress theory was used, and growth rates were

calculated by Paris' model. The translation and location of the contact are expressed

as functions of 2., the distance from the load to the crack. To calculate the kink angle,

first the values of/_ that correspond to an extremum of K = F[Kt(_.), K,(2.), 0(2.)] are

found. Next 0, Kt, and KH at these _, are calculated, from which the growth rate is

calculated. Finally, it is assumed that the crack propagates for N cycles at that growth

rate and angle, and the crack in the numerical model is updated and the process is

repeated. Panasyuk et al. assumed that their geometry was an elastic half plane, and,

therefore, they could set up closed form equations and solve analytically for Kt, Kit,

and 0. Once again, their method can not be directly applied to gear model because

neither the traction nor the geometry can be expressed in closed form. The method

also does not directly take into account the non-proportional loading and assumes a

constant kink angle for the entire load cycle. However, their method is extended and a

similar incremental approach is developed in the next section.

5.4.2 Proposed Method

Compared to a two dimensional static problem, the problem at hand is

continuous in time and in a third space dimension. Methods have been presented in

previous chapters and sections to discretize both of these dimensions. With the

discretizations, two dimensional crack propagation theories can be applied. In

summary, the proposed method discretizes the continuous loading in time into a series

of elliptical contact patches, or load increments. Two dimensional fatigue crack

propagation theories are then used to propagate incrementally a series of discrete

points from the three dimensional crack front. The remainder of this section outlines a

proposed method to predict fatigue crack trajectories in three dimensions taking into

account time varying SIFs.

Method

1. Discretize tooth contact path into 15 load steps (Section 5.2.1).

2. Calculate by the displacement correlation method, using a feature built in to

FRANC3D/BES, the mode I, II, and III SIFs (Kti(j_, Ku'_j;, Kmi_j)), where i is a

discrete point along the crack front (i=l-num__points) and j is the load case

( j = 0 - M ). In general, the nodes of the first row of mesh nodes behind the crack

front are taken as the discrete points. Figure 5.9 is a typical plot of the SIFs for a

single point i along the crack front for the entire loading cycle.
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. The goal of this step is to calculate for a given point i the amount of crack
• i

extension, da'oq ' j), during a load step from j'l to j. 0 C/q,J) is the angle for the

extension during a load step from j-1 to j. It is assumed that the crack grows

incrementally during a load cycle. In addition, propagation at point i only takes

place when the change in mode I SIF between load steps is positive,

(KI' j -Kli(j-l))> 0, and only when KI'j is _eater than the opening SIF at that

point, Koj. This implies that growth will only take place during the loading

portion of the cycle.

To calculate most accurately the total amount of crack growth over one cycle,

crack closure is taken into account. The amount of extension during one load

cycle predicted by a modified Paris' model, adjusted to incorporate crack closure,

is

dai=C(AKej) " (5.1)

where kKej K/,,,a., Kop i i= " - = U'K, m,,. U is given by Equation (4.2). Kop' is found

using Equations (4.4) and (4.5). Figure 5.9 shows that the loading is characterized

by R=0.
In order to calculate U, Smax, the far field stress in a Griffith crack problem, is

required. Figure 5.11 shows the Griffith crack geometry [Griffith 1921]. The

gear's geometry is obviously different= from a Griffith crack problem. Therefore,

an equivalent S,,a.,' must be calculated for the gear. First, K/,,,ax is found in step 2.

Sma.,.i is then found by solving Equation (3.2) for S,,,,,.,i:

S,,_,.i = _,,_,.i _ Kti,,o., (5.2)
• •

Lastly, it is assumed that, at a given point, the amount of extension between

load steps is proportional to the ratio of the change in mode I SIF to the effective

SIF. The amount of crack growth for each load increment is given by:
i i

i K t (j)- K I <i-I, da i (5.3)do {j-l,j) _"

AK effi

The angle of crack growth associate wi[h each load increment is found from the

maximum principal stress theory using the current load steps SIFs as:

0_J-_, J) 2tan -_ K_ i= - + - + 8 (5.4)
g ll'(j) K H'_ j)
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I 1

20

(
Figure 5.11: Griffith crack problem: Straight, through thickness crack in an infinite

plate subjected to uniform tensile stresses [Griffith 1921].

. Repeat step 3 for every load step of the cycle to get the final coordinates and angle

for the trajectory during one load cycle. The final crack trajectory is approximated

by a straight line from the initial crack tip location to the final crack growth

location. Based on simple geometry, the final length, da_, and final angle, Of/,

after one load cycle are calculated in the following manner:

dar i = _/(li )2 + (hi)2 (5.5)

,(17 i )O/= tan [)-7- (5.6)

M

where l'=__.dai_j-l.i_cos(Oi(_-,,j,) (5.7)
j=l

M
i • i

h' = __ da tj-,.j, sm(O (j-,.j,) (5.8)
j=!

,

Figure 5.12 illustrates this step schematically, assuming the load cycle has

been discretized into four steps, i.e. M = 4. Note that the arc length, which is the

sum of the dai(i__,i), is equal to the amount of growth predicted by the crack-

closure-modified Paris model, Equation (5.1). The arc length is given

mathematically by
M

da i = _. dai___,j) (5.9)
j=0

Repeat steps 3 and 4 for every point along the crack front.
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6. Determine the number of cycles, N, necessary to achieve a significant amount of

crack growth in relation to the pinion's geometry. This step is necessary because

the amount of crack growth over one load cycle is too small to update the

geometry model. Therefore, it is necessary to assume that a series of load cycles

has occurred prior to changing the geometry. Because each point along the crack

front has a unique growth rate associated with it, the crack front will not grow

uniformly. Each point will grow by an amount da_;,j.

da ii,,,Ii = N * daT i (5.10)

In general, N is chosen such that da_,j > 0.01 inches.

7. Update the FRANC3D geometry model with the new crack that has grown by an

amount of da_;,j. To accomplish this, a least squares curve fit is performed

through the new discrete crack front points. A single polynomial curve may be fit

through all of the points, or the points may be divided into a user-defined number

of sets and individual polynomial curves are fit to each set. After the crack

geometry is updated, it is necessary to locally remesh the model prior running the

BEM solver. Once again, all load steps are analyzed with the new crack.

8. Repeat process beginning at step 2.

Y

X

h i

l

:1,2)

i
(2,3)

I i

Figure 5.12: Schematic of crack extension for one point along the crack front after one

load cycle.
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5.4.3 Approximations of Method

The accuracy of the proposed method is limited by the accuracy of the BEM

results. In addition, several approximations and simplifications in the loading

conditions and crack growth rate models could affect the accuracy. The shape of the

elliptical contact patches is estimated by straight lines. When the applied traction is

far enough away from the crack front such that the deformation due to local contact

stresses does not contribute to the crack tip field, St. Venant's principle holds. In this

case, the shape of the traction area is inconsequential and the straight line

approximation is legitimate. However, if the crack trajectory is significantly close to a

contact patch, then this assumption is no longer valid. As a result, the accuracy of the

SIFs could be comprised. Furthermore, the size and location of each of the fifteen

contact areas are kept constant throughout the crack propagation. In reality, the

change in flexibility of the tooth could change the contact areas and in turn affect the

SIF distribution in the later stages of propagation. This aspect will be investigated in

Chapter 7. However, if the same contact areas are used during the entire crack

propagation simulation, the fatigue life predictions will most likely be conservative.

This is because the SIFs continuously increase as the crack advances when the loading

scenario is kept constant and the crack length is increasing.

It is assumed that the crack front conditions are characterized by plane strain

along the entire front. This is consistent with the maximum principal stress theory

equations implemented to calculate the kink angle. However, shallow qracks and

portions of edge cracks near the free surface are usually characterized by plane stress,

not plane strain. Nevertheless, crack growth rates will be larger in plane strain

conditions than plane stress. This assumption errs on the conservative side and will

predict shorter fatigue lives. The size of the plastic zone in the gear is investigated
more in Section 7.3.2.

An additional approximation is introduced when incrementally calculating the

amount of crack growth. The method assumes that crack growth only occurs during

the tensile portion of the load cycle. However, it can not be experimentally shown that

this is true. In fact, it is generally accepted that crack growth occurs during the

opening and closing portion of the load cycle [Laird 1967]. The tensile portion creates

plastic deformation at the crack tip and causes it to blunt. During unloading, the

plastic deformation creates a wedging action at the crack tip that acts to advance the
crack.

The reasoning behind Equation (5.3) governing the crack growth rate is that, if

the loading were to become proportional, the amount of crack extension predicted

during one loading cycle would be equal to that predicted by the crack-closure-

modified Paris' model. An additional assumption is that the method assumes mode I

dominant fatigue crack growth. If the ratio of Kit to Kt, and likewise the ratio of Km to

Kt, were to become large enough, the mode II (or mode IID loading could contribute to

the crack growth. In this case, AKeyy should be a function of KI, Km and/or Kin. The

models proposed for crack growth rates do not incorporate the mode II and HI effects.

For each propagation step, a value for N is chosen that is large enough to

increase a majority of the crack front a significant distance in relation to the model's

geometry. It is assumed during the N loading cycles that the variations in the
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displacements and stresses are negligible. In reality, the crack is growing slowly

during the cycles and therefore the displacements and stresses at the crack front will

vary as the crack advances. If the value of N is too large, then the model will not pick

up subtle changes in displacements. Consequently, the predicted crack front shape

and trajectory will be inaccurate.

5.5 Simulation Results
Three dimensional fatigue crack trajectory simulations are performed using the

method described for non-proportional loading in Section 5.4.2. The full pinion

boundary element model is used and an initial crack is introduced into the model as

described in Section 5.3. In order to validate the predictions, the dimensions and

shape of the crack are similar to a starter notch that was used in a tested pinion. The

experimental results and data are reported in Chapter 6.

Thirteen crack propagation steps are carried out, which model the crack at

thirteen distinct stages of growth. In each propagation step, the SIFs are evaluated

using the displacement correlation method at the mesh nodes in the first row of

elements along the crack front. To reduce the computational time for each

propagation step, the second stage of double tooth contact, load steps twelve through

fifteen, are ignored. The method for propagation adopted here only allows crack

growth during loading. The final four load steps represent the unloading portion of the

load cycle and, therefore, do not contribute to crack growth in the simulations.

The Paris growth rate model modified to incorporate crack closure is used in

this study. The model parameters are held constant during the propagation steps.

Values for C and n are taken from a curve fit to AISI 9310 steel crack growth rate data

from 250 ° oil (Section 4.4). t¢ is set equal to three (plane strain). To calculate S,,,_.,-;,

which is a variable in the Kop calculation, 13is set to one. The material properties listed
in Table 2.2 are used.

A least squares curve fit to the predicted discrete crack front points is used to

determine a smooth crack front curve. The approach is to fit a polynomial curve of

second or third order to groups of points. To allow unsymmetric crack front shapes,

the crack front points are divided into one, two, or three groups. A curve is then fit

independently through each group.

The tooth contact locations and magnitudes defined for the 100% design load

are used throughout the thirteen propagation steps. The loading simplifications for

these data were presented in Section 5.2.1.

Table 5.1 contains the crack geometry and growth rate data for each of the

propagation steps. N is rounded to the nearest 100 cycles. Figures 5.13 and 5.14 show

the initial and final crack trajectories along the tooth surface and the depth of the crack

into the gear rim. At the end of propagation step thirteen, the crack has propagated

neither entirely through the tooth width nor through the rim. The analyses are stopped

at this step because the toe end of the crack has reached the top land. It was decided

that continuing the analyses would lead to no additional insights because, as reported

in Chapter 7, the prediction differed from the experimental results. Also, one can

imagine that if the simulations were continued, since the trajectory has turned on both

the heel and toe end, this middle portion of the tooth will break away from the gear.
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Table5.1: Crackpropagationdatafrom trajectoryprediction.
Propagation N Crack Front Depth 7 Area

Step [cycles] Length [in] [in x 10 "2] [in 2 x 10"2]

0

1

2

3

4

5

6

7

8

9

10

ll

12

13

N.A°

15.000

20200

38200

56.200

66500

76.800

94.90O

121 300

147 200

187,400

227,000

274,000

311,000

0.200 5.00 0.579

0.233 5.53 0.743

0.258 5.58 0.837

0.237 5.17 0.933

0.453 5.88 1.69

0.506 6.32 2.19

0.595 6.85 2.77

0.774 8.10 4.27

0.940 9.50 5.76

1.11 11.4 7.77

1.15 12.9 10.1

1.19 14.9 12.5

1.29 16.9 15.7

1.42 18.8 18.6

N_tut = 311,000

a) Tooth surface

/

/
/
/

/
!

/
/
/
/
/

_, f /Initial

'_------_ ....

\
\

/

b) Cross section of tooth at midpoint of crack

Figure 5.13: Initial crack; N = 0 cycles.

7 The approximate location along the tooth length of the initial crack's midpoint is used to measure the

crack depth.
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b) Cross section of tooth at midpoint of
initial crack

Figure 5.14: Crack prediction after thirteen propagation steps; N -- 311,000 cycles.

In the simulation, the majority of the crack front has progressed almost

halfway through the tooth Width. A rough estimate of the total llfe _of the gear is made

by estimating the tooth width as 0.227 inches at the toe end and using the average

growth rate from step thirteen. From these data, approximately 200,000 cycles are

necessary for the crack front to progress through the remaining ligament. Therefore,

the number of cycles to failure beginning from the initial notch is estimated to be

511,000. This number could be non-conservative since a constant K is used to

calculate the remaining life. On the other hand, the fatigue life prediction does not

take into account the cycles leading up to crack initiation. It assumes that the crack

begins propagating immediately after the introduction Of the notch. It is most likely
that in a real gear a number of cycles are attributed to initiation of the crack

propagation from the notch.
Figure 5.15 is a plot of the calculated fatigue life. The location along the tooth

length of the initial crack's midpoint is used to measure the crack depth, which is

plotted against total number Of cycles. The crack face area as a function of total
number of cycles is also plotted for comparison since the crack depth varies along the

crack length.

z
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Figure 5.15: Predicted crack depth and crack area versus number of cycles.

The accuracy of the crack trajectory and fatigue life predictions will be

evaluated in Chapter 7 by comparing the simulation results to experimental data. The

experimental data is obtained from a spiral bevel pinion test that was carried out by

NASA/GRC.

5.6 Chapter Summary
In this chapter, a boundary element model of a spiral bevel pinion was

presented. Different size models were investigated to determine the smallest model
which achieved accurate SIF results. An initial crack was introduced into the model

and the SIF history along the crack front under the moving load on the pinion tooth

was found. It was determined that the loading on the tooth was non-proportional. As

a result, a method was developed to propagate the three dimensional crack under the

non-proportional load. A crack trajectory prediction in the OH-58 spiral bevel pinion

was performed using this method. In Chapter 7, the simulation results will be

compared to experiment results; Chapter 6 presents the experimental data. In addition,

in Chapter 7 parameters of the crack propagation method will be investigated to

determine the sensitivity of the growth rates and trajectories to variations in the

method and crack growth rate model variables.
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CHAPTER SIX:

EXPERIMENTAL RESULTS

6.1 Introduction
Experimental results can be used to evaluate the accuracy of the predictions

made in Chapter 5. Recordings of crack length and depth as a function of total

number of cycles are necessary to confirm the fatigue life prediction. Knowing the

crack front shape during propagation would also assist in verifying the predictions.

There is a limited amount of useful experimental data for the OH-58 pinion to

validate the numerical results. Test data from an OH-58 spiral bevel pinion are

provided by NASA/GRC. The crack growth observations made during the test are
limited. As a result, the fracture surfaces of the tested pinion are observed under a

scanning electron microscope (SEM). The test data from NASA/GRC and the

fracto_aphy results are summarized in Section 6.2 and 6.3, respectively. A crack

growth scenario during the test is formulated from the SEM observations.

6.2 Test Results
A pinion that was tested by NASA/GRC in their spiral bevel gear test fixture

under a separate research project is used for comparison/validation. Table 6.1

contains the loading data from the test. A notch was electro-discharge machined

(EDM) into the root of a tooth's concave side. The gear was run for six million cycles

beginning at 1550 in-lb torque and progressing up to 4649 in-lb torque at the end of

the six million cycles. The test was not stopped until the completion of the six million

cycles; at which time, there was no observable crack growth. As a result, eight more

notches of varying sizes were fabricated into individual tooth roots of the pinion. The

pinion then ran continuously for an additional 4.9 million cycles at increasing levels of

torque detailed in Table 6.1. At the completion of the 4.9 million cycles, five teeth

had fractured from the pinion.

Table 6.1: Pinion test data.

Time

[cycles]
1 million

1.9 million

Speed

[rpm]
6060

6O6O

Torque

[in-lb]

1550

# of EDM

Notches

4649

l million 6060 2324 1

1 million 6060 3099 1

1 million 6060 3874 1

2 million 6060 4649 1

1 million 4848 2479 9

1 million 6060 3099 9

l million 6060 3874 9

9

During the latter 4.9 million cycles, the test was never stopped to observe the

crack growth. Therefore, the sequence of events for the tooth fractures and the exact
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number of cycles to failure are unknown. Some of the crack growth may have

occurred during the first million cycles at 2479 in-lb torque, or there may have been

no crack growth until the last 1.9 million cycles at 4649 in-lb torque. In addition,

since no observations of crack growth during the 4.9 million cycles were made, the

predicted fatigue life curve (Figure 5.15) can not be validated. The only quantitative

information is an upper bound of 4.9 million cycles on the total number of cycles to
failure.

a)

b)

Figure 6.1: Typical tooth failure in tested pinion.
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Qualitative information can be taken from the pinion test to validate the
predictions. For example, all five failures were teeth fractures. There was no
evidenceof a rim type of failure. A macroscopicview of the cracktrajectorycanbe
determinedfrom the testedpinion. Figure 6.1 showsphotographsof a typical tooth
failure in the testedpinion. The rectangularEDM notchon the concaveside of the
tooth nearthe root is observablein all of thepictures. Thecrack trajectory,which is
assumedto initiate from theEDM notch, is deeperinto the rim in the middle of the
tooth length thanon the toe end. In addition,a ridge is observedwherethe crack
trajectoryturnedtowardtheroot of the convexsidefrom theinitial path into the rim.
All five of the fracturedteethhadremainingportionsof thetooth left intactat theheel
end. Furthermore,four of thenotchesweresmallenoughsuchthattheydonot appear
to havegrownduring the4.9million loadcycles.

Crackgrowth ratedataandcrack front shapeinformationduring propagation
could both be used to validate the numerical analyses. Since this data was
unavailable,the tooth fractureswere observedwith a SEM. The SEM observations
aresummarizedin thenextsection.

6.3 Fractography

6.3.1 Overview

Three teeth that had fractured from the tested OH-58 pinion were examined

using a SEM. Tooth #11 contained a "short" notch (-4 mm long x -lmm deep), and
was the initial flaw from which the numerical simulations were based. Tooth #5

contained a longer and deeper starter notch (-18 mm x -1.7 mm deep). Pictures of
these teeth's fracture surfaces are contained in this section. The starter notch of the

third tooth examined was similar to tooth #i 1. No distinguishing features were found

on the tooth that were not seen on the other teeth.

There were several goals of the examinations. The primary objectives were to

determine how much of the crack growth occurred due to fatigue, where the

mechanism of failure might have changed, and, if it did change, to what type of

fracture mechanism. Additionally, information on the rate of crack growth and the

crack front shape during propagation was desired. All of this information could verify

how well the numerical simulations predicted the actual crack evolution.

The sketch in Figure 6.2 shows a typical view of how the crack propagated

through a pinion tooth's cross section. The crack initiated from the EDM notch on the

side of the tooth with the applied load. This side is the loaded or concave side. The

opposite side of the tooth, where the crack ends, is the load free or convex side. The

region where the crack deviates from the original path, into the rim, towards the fillet

on the convex side will be referredto as the ridge.

Figures 6.3 and 6.4 are of tooth #5 and #11, respectively. The fractured teeth

are lying on their side with the tooth surface at the bottom of the figure and the ridge

at the top. As illustrated in Figure 6.2, the crack growth direction was from the bottom

of the photograph toward the ridge at the top of the photograph. The EDM notch is
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the rectangular region along a portion of the tooth length near the bottom right comer

and is labeled A in the figures.

Concave side Convex side

I .... rubbed

Fatigue:

.... Fatigue: partially rubbed

-- Ductile rupture
Tooth surface

Crack initiation

from EDM notch--... Ridge _

Figure 6.2: Sketch of crack propagation through typical pinion tooth's cross section.

The left side of both Figures 6.3 and 6.4 is the toe end of the tooth length. This

is true for all of the concave side pictures in this chapter. On the other hand, the right

side of the photographs from the convex side is the toe end of the tooth length. All of
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the photographsof the fracture surfacesdesignatethe tooth number, the level of
magnification,andalengthscale.

Figure6.4:Low magnification(5.3x)view of tooth#11's fracturesurfaceonconcave
side.

6.3.2Results
The morphologiesof teeth #5 and #11 are very similar. Lines emanating

radially from thestarternotcharevisible atlow magnifications(4.6x in Figure6.3and
5.3×in Figure6.4). Theselinesareindicativeof fatiguecrackgrowth.

On tooth#11, somefatiguestriationscanbeseenneartheEDM notch. Region
A in Figure 6.5a is the EDM notch. Figure 6.5b is a magnifiedview of the striated
region.8As expected,the striationsareroughlyparallel to the edgeof theEDM notch.
The crack growth direction was perpendicularto the striations and, as mentioned
above,from thebottomof thefiguretowardsthetop. In general,however,mostof the
surfacenearthenotchwasflat with no significantfeaturesor texture. This flat surface
leadsto theconclusionthatsignificantrubbingtook place. The rubbing"polished" the
surfaceandremovedall featuresthat would haveindicatedthe modeof fracture,e.g.
fatigue striations,dimples,etc. The rubbedsurfacewas visible over approximately
80%of thesurfacewhenmovingawayfrom the notchtowardtheridgeof thefracture.
PointB in Figure6.3 is theapproximatelocationwhereFigure 6.6was taken. Figure
6.6 is an exampleof the typical surfaceappearancein the rubbed region.9 The

8Figure B. 1 in Appendix B also contains magnified views of the striated region.
9 Figure B.2 in Appendix B is another picture of the typical surface appearance in the rubbed region.

Point B in Figure 6.4 is the approximate location where Figure B.2 was taken.
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polishing might have resulted from rubbing of the crack faces while the gear was in

operation or rubbing against a part of the gearbox after fracturing away from the

pinion. The extent and uniformity of the flat, polished surfaces support the former

hypothesis.

Figure 6.5: Fatigue striations near EDM notch on tooth #11 at 30× (a) and at 307× (b).

A transition from the flat, polished area to one with some texture combined

with flattened areas was observed further from the notch near the ridge (point C in

Figures 6.3 and 6.4). In Figures 6.3 and 6.4, this combination, or partially rubbed,

type of surface was found along the transition line from the darker region (flat,

polished area) to the lighter region of the upper left corner. Recall the light region in

both figures is near the toe end of the tooth. Figure 6.7, taken from region C in Figure

6.3, shows clearly the features of the partially rubbed surface. The appearance of the

raised areas is as if they have been flattened, while the lower lying regions have

morphology indicative of fatigue. However, no well developed fatigue striations are
observed.
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Figure 6.6: Typical picture of flat, polished area on tooth #5 (410×). Photograph was

taken near location B in Figure 6.3.

Figure 6.7: Typical picture of partially rubbed surface (695×). Photograph was taken

from location C in Figure 6.3.

The lighter region in the upper left comers of Figures 6.3 and 6.4 (point D)

shows little to no signs of rubbing. The surface also shows no obvious signs of

fracture mode, e.g. intergranular fracture, ductile rupture, dimpling. Although no
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striations were present on the surface, the fact that no other obvious signs of failure

mode were observed, lead to the conclusion that the crack propagated by fatigue in

this region under an applied 10ad range which was inadequate to produce striations.

The lack of rubbing also suggests that the fracture surfaces were created in the later

stages of crack growth.

The combination type of surface was also found over approximately 90% of

the surface on the load free side of the tooth. Figure 6.8, of a partially rubbed surface,

was taken from location A in Figure 6.9. Region B in Figure 6.9 is the tooth surface

on the load free side. Therefore, point A is approximately 0.75 mm from where the

crack ended on the tooth surface. In addition, there are fatigue striations evident in

Figure 6.8. Because this figure is from the convex side of the tooth, the crack growth

direction was from the top of the figure to the bottom. This combination of evidence

leads to the conclusion that the crack continued to Wow in fatigue mode along the

convex side of the tooth.

A light band can be seen in Region C of Figure 6.9. The darkened region

separating region B and C is assumed to be oxidation of the fracture surface. Recall

that the fatigue striations in Figure 6.8 are from location A. The surface in Region C

shows obvious signs of duct_e rupture, Figure 6,i0, This observation is encouraging

because it demonstrates that the material is capable of failing by ductile fracture, and

the areas where this type of fracture occurred should be obvious and visible under the

SEM. This result also leads to the conclusion that the primary mode of crack growth

on the concave and convex sides of the tooth was fatigue.

Figure 6'8: Picture of paVia]lynChed surface with fatigue striations on load free side

(825×). Photograph was taken at location A in Figure 6.9.
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Figure6.9: Low magnification(31.4×)view of tooth#5's fracturesurfaceonconvex
side.

A third tooth (#9) was also observedwith the SEM. All of the features
observedon teeth #5 and #11, with the exception of the ductile fracture area, were

observed on tooth #9. No additional features could be seen. It is concluded that the

observations made of teeth #5 and #11 are good representations of the crack patterns

on all of the fractured teeth.

Figure 6.10: Magnified view of ductile rupture at location C in Figure 6.9 (1670x).
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Figure 6.11 summarizesthe surfaceappearanceon the loadedand load free
sides of the fractured pinion teeth. A scenarioof crack growth progressionis
developedbasedon theseobservations.The fatigue crackgrowth initiates from the
EDM notch. The growth continuesinto the rim and at a larger ratetowardsthe toe
thantheheelsinceit is assumedthattherubbedareasaretheolder surfaces.Oncethe
crackreachestheridge,thecrackcontinuesto grow towardthetoeend. Figure6.12is
a sketchof this scenarioon the loadedside. Thenumbersin the sketchcorrespondto
theprogressionof the Crack front' When the Crack re_es the tooth surface at the toe

end, the extent of crack growth has dramatically changed the stress distribution in the

remaining ligament. Consequently, the crack front turns toward the fillet on the

convex side, and progresses by fatigue along the convex side. When the crack front

becomes sufficiently close to the root of the convex side, ductile rupture occurs in the

remaining ligament• After this, any additional load on the tooth causes the torsional

tearing of the ligament on the heel end. Figure 6.2 sketches the crack growth through

the tooth width. This sketch is applicable to cross-sections from the toe end to

approximately the middle of the tooth length.

No rubbing

Toe

Tooth root concave side

Heel

tile rupture

Ridge

Partially rubbed

Tooth root convex side

\

Heel

Toe

Figure 6.11" Sketch of loaded and load free sides of a pinion tooth's fracture surface

appearance along the length. Orientation is consistent with SEM pictures.
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Toe

Ridge

Tooth root concave side

Heel

Figure 6.12: Sketch of crack propagation scenario on loaded side devised from
fracture surfaces.

6.4 Chapter Summary
This chapter was devoted to presenting data from an OH-58 spiral bevel pinion

test. The test was conducted by NASA/GRC. EDM notches were introduced into the

root of nine of the pinion teeth to serve as starter cracks for fatigue crack growth.

Limited observations of the crack growth during the test were made, and, as a result,
the fracture surfaces were observed with a SEM.

Overall, the microscopy identified fatigue crack growth regions and regions of

ductile rupture successfully. In addition, the crack face morphology showed

significant signs of rubbing, which had "polished" the surface. This polishing

removed any discernable fracture surface features on the majority of the surfaces. The

signs of fatigue on the loaded and load free sides of the fracture surface indicated the

majority of the crack growth was attributed to fatigue. At the ridge near the toe end,

the surface showed little to no signs of rubbing. This observation suggested that the

surface was created in the latter stages of crack growth. It was inferred from the

jagged and tom appearance of the fracture surface near the heel that this region was

the last remaining ligament of the tooth after rupture occurred in the root of the convex
side.

Due to the dearth of well-developed fatigue striations on the fracture surfaces,

no observations were made on the crack growth rates. In addition, the large amounts

of rubbing removed all indications of crack front shape during propagation.

Nevertheless, a scenario of crack propagation was devised. The next chapter

compares these test results to the simulations results from Chapter 5.
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CHAPTER SEVEN:

DISCUSSION AND SENSITIVITY STUDIES

7.1 Introduction
In Chapter 5, fatigue crack growth in the OH-58 spiral bevel pinion under

moving, non-proportional loads was predicted. Chapter 6 presented experimental

fatigue crack data from a tested OH-58 spiral bevel pinion. The present chapter

compares these two sets of results to evaluate the success of the predictions and

investigates the sensitivity of the prediction results to variations in the methods

assumptions.

In Section 7.2, the crack growth simulations are compared to the experimental

results of a tested pinion; the fatigue lives and crack trajectories are evaluated to

determine the accuracy of the prediction method. Sensitivity studies are conducted in

Section 7.3 to explore variations in tooth contact position and magnitude and the

sensitivity of the crack-closure-based fatigue crack growth rate models to variations in

the model parameters.

Crack growth predictions from the moving load analyses (Section 5.5) are

compared to crack growth results from analyses that consider only highest point of

single tooth contact (HPSTC) loading in Section 7.4. HPSTC loading has been

commonly adopted in past research because it is a more simplified approach than the

moving load. When using HPSTC loading, existing fatigue crack growth theories can

be implemented since there is a single load location and proportional loading. The

two loading methods' results are compared to evaluate the need for the moving, non-

proportional load method; the least computationally intensive model and method

which produces reasonable crack growth results is the most practical for a gear

designer.

7.2 Comparisons of Crack Growth Results
Figure 7.1 shows the predicted and experimental trajectories on the tooth

surface and through the cross section of a pinion tooth. The predicted results are the

same as those reported in Section 5.5. The experimental trajectories are approximated

from measurements and photographs of the failure surfaces of tooth #11. As

discussed in Chapter 6, the failure associated with tooth #11 is representative of all the

failures in the tested pinion. In addition, the size of the initial flaw in the predictions
was taken from the dimensions of the EDM notch in tooth #11.

A ridge is not observed in the predicted crack path through the cross section

because the simulations were stopped prematurely. The simulations were halted

because the trajectory along the tooth surface on the toe end varied significantly from

the experiment. As a result, it was concluded that the simulations were not completely

accurate and further propagation of the crack would lead to no additional insights. An

explanation for this discrepancy might be that the simulation did not properly account

for changes in the load shape and location as the crack grew. This changing load

scenario will be investigated further in Section 7.3.3.
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Figure 7.1" Predicted and experimental crack trajectories.

Qualitative comparisons of the analyses' results to the tested pinion results can

be made. The numerical analyses predict tooth failure, which is concordant with the

experiment. In addition, in both the fractography study and numerical analyses, the

crack propagates more rapidly toward the toe than the heel. In both the test and

simulation, a portion of the tooth at the heel end remains intact. Additionally, the

simulations predict the crack propagating along a steeper trajectory into the gear rim in

the middle of the tooth length than on the toe end of the length. This behavior is also

observed in the tested pinion.

The final predicted trajectory through the thickness of the tooth a_ees very

well with the initial path in the experiment. It is assumed that this path could lead to

the formation of a ridge if the simulations were continued. The entire predicted crack

trajectory, however, does not completely match the tested pinion. The simulations

predict the toe end of the crack turning up the tooth height at a steep angle. This

behavior is not seen in the tested pinion. One reason for the discrepancy could be that

the loading conditions for the simulations were not identical to the test. The gear was

tested at increasing torque levels over the 4.9 million cycles. The simulations,

however, were performed under a constant torque level. The increase in torque should

affect the tooth contact, which, in turn, will influence the crack trajectory. The

influences of the torque level and contact location on crack trajectories are explored in
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Section 7.3.3. The goal is to predict what operating conditions would be necessary to

obtain the fracture path observed in the tested pinion.

For the constant torque level of 3120 in-lb, approximately five hundred

thousand cycles were predicted to propagate the crack through the tooth thickness.

This value is the same order of magnitude as that which occurred in the tested pinion.

The number of cycles to produce the tooth fractures in the test is smaller than 4.9

million. The sensitivity of the fatigue life prediction to the values chosen for the

model parameters is studied in Section 7.3.1.

Alban's condition number four for "classic tooth-bending fatigue" scenario

(Section 2.5) is not captured in the numerical work. The magnitude of the applied

loads during the cycle was kept constant during the crack propagation analyses, Figure

7.2a. This type of loading scenario is considered load control and results in the SIFs

increasing continuously as the crack grows, Figure 7.2b. Fatigue crack growth will

occur at an increasing rate until the SIFs satisfy a fracture criterion, such as K 1 = K_c.

Crack growth simulations under load control will predict a shorter number of cycles to

failure than observed. This is because, in reality, when a cracked and uncracked tooth

mesh, the cracked tooth will deflect a limited amount before it's adjacent tooth picks

up a portion of the load [Alban 1985]. The displacement of the crack faces reaches a

maximum and will be roughly equal for every remaining load cycle. As a result, the

rate of increase in the SIFs will decrease, and reach roughly a constant maximum

every cycle. An idealization of this is shown schematically in Figure 7.2c.

Propagating the crack under these conditions is considered displacement control.

When the maximum SIF ceases to increase, the fatigue crack growth rate is relatively

constant, and the number of cycles to failure increases.

a)

P_

K

c)

/
Tithe b)

K

Time

Figure 7.2: Schematic of load cycles: a) Load versus time, b) Kt versus time, load

control, and c) KI versus time, displacement control.
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To demonstratethatthesimulationsarecapableof predictingtheturningthat is
necessaryto predict the ridge in the fracturedtooth, a large crack shapeis assumed
and inserted into the full pinion BEM model. The crack front coordinatesare
determinedby the location of the ridge in a fractured tooth from the experiment.
Figure7.3 is aphotographof thefracturesurfacewith theapproximatelocationof the
assumedcrackfront designatedby thedashedline. Basedon the SEM observations,
the assumedcrack haspropagatedalong the root from the initial notch to the toe
surface. Figure 7.4 is a picture of the BEM geometrymodel that illustratesthe
assumedinitial cracktrajectoryon the tooth surface. Sincethe correctcontactareas
for a tooththat is flawed to this largeof anextentareunknown,theHPSTCload step
from the movingloadanalyses(loadstepeleven)is used.

Figure7.3:Assumedlocationof crackfront (ridge).

Figure7.4:Tooth surfaceshowingassumedshapeof largecrack(dashedline).

A few cyclesof crack growth arecarriedout using the methoddescribedin
Section 3.2.3. Thismethod assumesmode I dominant fatigue crack growth with
static,proportionalloading. Thecyclesof crackgrowth arenecessaryto demonstrate
thedirection the crackfront progressesfrom its assumedlocationat thebeginningof
theridgeformati0nl Figure 7.5showsthetrajectorythroughthethicknessof thetooth
at approximatelythemiddle of the tooth length. The initial trajectoryinto the rim is
assumedto be fiat, andthecurvingat theendof thecrack lengthshowstheformation
of the ridge. This demonstrationof the ridge formation basedon an assumedcrack
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front from the SEM observationsupportsthe crack growth scenariodevelopedin
Section6.3.2.

\

\

, \

!

Initial crack \
\

l°I°n

Figure 7.5: Crack trajectory through tooth thickness for assumed large crack.

One could argue that the tested spiral bevel pinion failure did not exactly meet

the classical failure conditions described in Section 2.5 since the entire length of the

tooth did not fracture from the gear; a portion of the tooth at the heel remained intact.

This suggests that the loading might have been biased toward the toe end of the tooth.

Numerical analyses with shifted load locations are presented in Section 7.3.3 that give

insight into the sensitivity of the crack trajectories to loading location.

The predictions in Section 5.5 did not consider changes in the original contact

locations during propagation. The increasing tooth deflections as the crack grows

might cause the original contact locations to shift and the distribution of load and the

size of the contact ellipses to change. A three dimensional, contact mechanics, and

fracture mechanics simulation of the rolling process between two mating gears is

necessary to capture the load redistribution effects fully. This type of analysis is not in

the scope of this work.

It is impossible to determine the exact amount of rubbing between the crack

faces based on the BEM analyses. In Section 6.3.2 it was concluded that the surfaces

with greater amounts of rubbing were formed in the earlier stages of crack growth;

since these surfaces were older, the features of the surfaces had more time to rub

away. The kinematics of the geometry and loading is another explanation for the

varying amounts of rubbing observed on the fracture surfaces. Rather than attribute

the varying degrees of rubbing to time, it could be attributed to the magnitude of

contact between the fracture surfaces_ _¢ loading might deflect the tooth in a manner

that does not allow the ridge's fracture surfaces to rub, but does create large contact

forces between the crack faces near the notch. A three dimensional analysis modeling

contact between the crack faces with accurate loading conditions on the tooth surface

is necessary to determine the true cause of the rubbing.

7.3 Sensitivity Studies

These studies are performed to gain insight into the sensitivity of predicted

crack growth rates and predicted crack trajectories to growth rate model assumptions,

load magnitude, and load location. They are also conducted to investigate possible
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causes for the discrepancies between the predictions and the experimental results. The

fatigue crack growth rate model parameters, Section 7.3.1, crack closure model

parameters, Section 7.3.2, and the contact position and magnitude, Section 7.3.3, are
researched further.

7.3.1 Fatigue Crack Growth Rate Model Parameters

Limited fatigue crack growth rate data is available in the literature for AISI

9310 steel. The predictions in Section 5.5 used values for the crack growth rate model

parameters, n and C, taken from a curve fit to the intrinsic fatigue crack growth rate

data (no closure) for AISI 9310 tested in 250 ° oil. These values were 3.36 and

6.19e-20 (in/cycle)/(psi*in°5) ", respectively. The range of values for n and C from the

literature is reported in Table 7.1. Au et al.'s data are not from intrinsic fatigue crack

growth rate curves. Their data are from fatigue crack growth tests with R = 0.05.

The other three sets of model parameters have been normalized to an intrinsic fatigue

crack growth rate curve.

Table 7.1:

Source n

Forman et al.
1.63

_ [19841
Au et al.
[1981]11 2.56

Air test
3.63

[Proprietary 1998] .......
Oil test

[Proprietary 1998] _3.36

Fatigue crack growth rate
C

[(in/cycle)/(psi*in°5)]"

1.08e-13

2.72e-17

5.49e-21 1.54e-5

6.19e-20 1.23e-5

model parameters.
da/dN l°

[in/cycle]

9.30e-6

2.03e-6

Cycles
/inch I

Fatigue
Life 1

107,527 675,838

492,611 3,096,201

64,935

81,301

408,145

511,000

The fatigue life estimates using each set of parameters in Table 7.1 assume that

the number of cycles that each source would predict for the gear's fatigue life is

roughly proportional to the ratio of the oil test's cycles/inch to each set's cycles/inch.

Forman et al., Au et al., and the air test data each predict a fatigue life of 675,838

cycles (32% increase), 3,096,201 cycles (506% increase), and 408,135 cycles (20%

decrease), respectively.

Au et al.'s combination of n and C predicts the smallest growth rate and

therefore the longest fatigue life. The benefits and conservatism of considering crack

closure in the predictions is demonstrated by comparing the predictions using the

intrinsic parameters to the predictions with Au et al.'s parameters. Figure 7.6 contains

the fatigue crack growth rate curves for the various sets of n and C. The curves are

generated from the data in Table 7.1.

_0Calculations are based on an assumed value for AK = 18,000 psi*in °'5.

I_ This data was taken from a fit to fatigue crack growth rate data for non-carburized AISI 9310 tested
in wet air, at a loading frequency of 1.0 Hz, and R = 0.05. The parameters are not from intrinsic

fatigue crack growth rate data. It is should be noted that when parameters from the air test at R = 0.05
are used the calculated growth rate is 2.02e-6 in/cycle.
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Figure 7.6: Fatigue crack growth rate curves for the sets of model parameters in
Table 7.1.

An exact evaluation of which set of material constants is most accurate is

nearly impossible since many parameters of the pinion test are unknown. The

calculations presented in this section demonstrate a trend that the fatigue life

calculations will be more accurate when material constants from intrinsic fatigue crack

growth rate curves are used.

7.3.2 Crack Closure Model Parameters

For the simulation results presented in Section 5.5, values for the crack closure

model parameters, rand fl, were assumed in order to calculate the fatigue crack

growth rates. This section investigates the validity and sensitivity of the results to the
assumed values.

Crack Growth Rate Sensitivi O, to r¢

t¢ incorporates three dimensional effects into the crack growth rate

calculations. Newman specifies that tc varies between one and three for plane stress to

plane strain, respectively. For the predictions reported in Section 5.5, _¢was equal to

three. However, for extremely shallow cracks or portions of the crack front near the

free surface, a value of _c equal to one might represent the crack conditions more

accurately.

One method to evaluate the crack tip conditions is to compare the size of the

crack tip plastic zone to the crack's geometry. The plastic zone is larger in plane

stress than in plane strain. An approximation of the plastic zone size, rp, is

I(K/] 2
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Usingload stepeleven'sSIF resultsfrom the initial crack (Figure5.8), which
arethelargestmodeI SIFsduring the loadcycle, theplasticzonesizealongthecrack
front rangesfrom 1.44x104 inchesto 1.07x10-3 inches. Thesedimensionsareonly
0.29% and2.14%,respectively,of the initial crackdepth. It is concluded,therefore,
that theplanestrainassumptionalongtheentirecrackfront mostaccuratelyrepresents
theconditionsin thereal gear.

Crack Growth Rate SensitiviO, to/3

S,,,.,, the far field applied stress, is a function of ,6, c (half of the crack length),

and KI. /3 is a dimensionless quantity that considers geometry effects when relating/(1

to the applied stress. Values of [3 from handbook solutions can vary from one half to

two [Murakami 1987]. Since the gear geometry is complex and unlike any handbook

solution, a value of /3 = 1 was selected. An alternate approach could have been to use

a known/3 factor for a similar, simplified geometry. This alternate approach will now

be investigated and growth rates between the two methods will be compared.

/ T° /

|

vl

2c

/

lo
Figure 7.7: Finite thickness plate with a semi-elliptical surface crack subjected to

mode I uniform stress.

The initial crack in the gear is approximated by a finite thickness plate with a

semi-elliptical surface flaw subjected to mode I uniform tensile stress, o', Figure 7.7.

The magnitude of K1 varies along the crack front. Kl,,,_x and Ki,,,i,, occur at the surface

and midpoint of the crack front, respectively. They are given by Broek [1986] as:
/-----

1-1217,f _ and Kl,,i,, l'12Jao"= - _ (7.2)
KI"'_" _) O _c
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where
From Equation (7.2), the maximum and minimum expressions for fl are

=I.12 /_-= 1.12 and ft,,i,, (7.3)

Based on the initial crack geometry, tim,,, and flmi,, are 0.783 and 0.701, respectively.

Kop and da are recalculated using these values for fl, the SIFs from the initial notch

analyses (Figure 5.8), and the same model parameters as were used in Section 5.5.

2.5

--_ Koe(fl ,,,_.,)

--n- da (fl ,,,a_.) l

2 "_Kop(fl,,,,,,)

! ---a--da(fl,,,,,,)
[

_1.5'

e-

_ 1

0.5

0 --T I P P _ I I i _ , i

I 6 11 16 21 26 31 36 41 46 51 56 61

Crack front position

(Orientation: heel to toe)

Figure 7.8: Change in Kop and da as functions of flma.,-and tim,,, with respect to original

calculations with fl = 0.

Figure 7.8 shows the percent change of Kop and da with respect to the original

calculations. The data show that the largest percent difference is 2.2%. As the crack

grows the ratio of a to c will become smaller since the tooth length is longer than the

tooth width. This will increase tp and, therefore, increase fl,,,a.,, and decrease flmi,.

However, as the crack grows, this closed form solution for KI in the gear is no longer

valid since the crack's geometry changes dramatically. Therefore, no further

conclusions can be stated on the effect of fl on crack growth calculations.

7.3.3 Loading Assumptions

The intent of this study is to determine how the crack trajectory changes under
different contact conditions. One motivation for this is that the simulation and

experiment's crack trajectories on the toe end do not match. The tested pinion's crack

mouth remained relatively flat along the root until it reached the end of the tooth
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lengthatthetoe (Figure6.lb). Thetrajectoryin the simulationturned,outof theroot,
up the tooth height and eventually reached the top land (Figure 5.14a). It is
hypothesizedthat the differencesmay be attributedto inconsistenciesbetweenthe
contactconditions(loadingconditions).

The inconsistenciescould result from misalig-nmentduring the test or
inaccuraterepresentationin the simulation of the actual contact areasin the test.
Glodez et al.'s [1998] experimental work with spur gears supports this hypothesis.

They considered two load cases: i) loading along the entire length of the tooth, and ii)

loading along one half of the length. With load case ii) the crack in the unloaded

portion of the tooth length turned out of the root and grew up the tooth height. On the

other hand, the crack in load case i) remained flat along the entire length of the tooth

root. The goal of the remainder of this section is to investigate whether shifted loads

have the same influence on crack trajectories in spiral bevel gears as Glodez et al.

showed in spur gears.

Load Location

Two shifted load scenarios are investigated. For both scenarios, the cracked

BEM model from propagation step number five is analyzed under the shifted contact.

This model was chosen because the crack trajectory began turning sharply from this

step onward in the preliminary analyses. The contact areas are shifted approximately

+0.3 inches along the tooth length.

The crack trajectory for the shifted contact areas is calculated using the non-

proportional load method described in Section 5.4.2. The load cycle is approximated

by the discrete load steps one, five, and eleven. Table 7.2 sketches the predicted

trajectories on the tooth surface for the original and two shifted analyses. The mode I

and II SIFs from the shifted loading scenarios are given in Appendix C.

When the contact is central, the crack turns up the tooth height on both ends.

The trajectory "wraps around" the contact location. However, when the contact is

shifted toward the heel (toe), the tendency for the crack to kink up on the heel end (toe

end) is suppressed. This is most clearly seen when comparing the central and toe

contact location trajectories. Th!s result is consistent with Glodez et al.'s
observations. As a result, it is assumed that, if the fatigue crack growth simulations

were carried out further with the shifted contact locations, a flatter trajectory that

maintains a path very near the root under the contact location will result.

The discrepancy of the toe end trajectory between the test and simulation is

explained by the fact that, in the test, the contact was closer to the toe end. The shifted

contact could have resulted from increasing deflections of the tooth. As the crack

grew, the tooth's stiffness decreased, and the load could have been redistributed along

the tooth length. The subtleties of the redistribution and its effect on crack trajectories

can only be modeled accurately with a three dimensional contact analysis between the

mating gears in conjunction with a fracture mechanics simulation.
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Table7.2: Cracktrajectories from contact locations shifted along tooth length.

Contact location Schematic of resulting crack

trajectory on surface in root
Heel-shifted

=

Central

Toe-shifted

Load Magnitude

The tested spiral bevel pinion was run at varying levels of input torque detailed

in Table 6.1. However, the simulation results reported in Section 5.5 assumed contact

areas and load magnitudes produced by 3120 in-lb torque (100% design load). The

goal of the current study is to identify the influences of the increased torque levels on

crack trajectories.

The SIF distributions and trajectories under larger torque levels of 3874 in-lb

and 4649 in-lb (125% and 150% design load, respectively) are explored. From

Hertzian contact theory, _t is known that the lengths of the contact ellipses' axes are

proportional to the cube root of the applied load (Equation (2.1)). Consequently, the

lengths of the major and minor axes increase by 7.72% (125% design load torque) and

14.47% (150% design load torque) under the larger loads. It is assumed that the mean

contact points (center of the ellipses) are the same as the points defined for the 100%

design load. Similar to the shifted load analyses, the crack from propagation step five

in the moving load simulations (Section 5.5) is selected to analyze under the larger

torque levels. Figure 7.9 shows the locations of the crack and of the contact ellipses

defined for 125% design load.
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Figure 7.9: Geometry model with crack showing contact areas one and eleven defined

for 125% design torque.

The mode I and II SIFs from load steps one and eleven are presented in Figures

7.10 and 7.11, respectively. The mode I SIFs do not increase linearly with the larger

loads; the 125% load has a larger effect than the 150% load. The smaller spread

between the curves produced by load step one at the toe end is most likely explained

by the fact that the load is not over this portion of the crack. In contrast, the SIFs

increase uniformly along the entire crack front for load step eleven; the major axis of

contact ellipse eleven is larger than the length of the crack mouth, and the ellipse is

located directly above the crack. On the other hand, for load step one the influence of

the increased load on the mode II SIFs is opposite. There is a larger spread in the

curves over the portion of the crack with no load above it (toe end).

The ratio KI1/K_ is important because it determines the crack trajectory angle

and the amount of rubbing between the crack faces. The larger the ratio is, the larger

the kink angle will be and the greater the amount of rubbing. Figure 7.12 contains

these ratios produced by the two load locations and all three load magnitudes. The

curves demonstrate that the ratio of K_I to KI increases as the magnitude of load and

size of the contact area increases. This implies that KH is more sensitive to the

changes in the torque level than K_. This result supports the fractography

observations. A large percentage of the fracture surface displayed signs of significant

amounts of rubbing between the crack faces. The SIT ratios from the initial crack

propagation analyses were not necessarily large enough to support the extent of

rubbing observed. However, it appears that the increased torque levels will increase

the amount of rubbing between the crack faces.

The kink angles calculated by the maximum principal stress theory for the

various load locations and magnitudes are given in Figure 7.13. The largest absolute

change in angle is 9.7 ° and 6.4 ° for load step one and eleven, respectively.
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Figure 7.10: KI distribution for load step one (a) and load step eleven (b).

NAS A/CR--2000-210062 93



a)

(2;

E.

15oo Load Step 1
--*--150% Load

125% Load

1000 -- 100% Loa_

1'7

0 .... , j. >.--, _, ,

-500 _ \\_ t / _Xe=_j Crack front position

_ bier/ _ (Orientation: heel to toe)

-1000 _'! _
I

-1500 J

9000

8000

7000

6000
¢5

•- 5000
.*..,

4000

3000

2000

I000

Load Step 11
' --,- 150% Load

- --_ 125% Load

ad

1

ti

i t i i

0 5 I0 15 20

Crack front position

(Orientation: heel to toe)b)

25

Figure 7.11" Ku distribution for load step one (a) and load step eleven (b).

NASA/CR 2000-210062 94



a)

0.5 7

Load Step 1
0.4 _ 150% Load

125% Load

0.3 , -- 100% Load /1_

0.2 _
/

0.i _=_,,. I//_

0 \ 5 ............. _ 25
i "_ f // \ _/" _Crack front position

-0.1 ! V / _ (Onentation: heel to toe)

-0.2 r

0.5

0.4

0.3

0.2

0.1

o_

-0.1

-0.2 -

b)

Load Step 11

- ./_ / _,,,, --'-150% Load

,/" ./ \,,, ---125_LoadJ

1

-i

i

i I i i

5 10 15 2O 25

Crack front position

(Orientation: heel to toe)

Figure 7.12: KI1/KI distribution for load step one (a) and load step eleven (b).

NASA/CR--2000-210062 95



a)

0 25

[degrees]
20

15

10

5

0

-5

-10

-15

-20

-25

-30

-35

Load Step 1
--_ 150% Load

_ 125% Load

,_ -- 100% Load

-5

-10

-15

-20

-25

-30

-35

I

-40

I

0 -45

i i i _ i

5 10 15 20 25

Crack front position

(Orientation: heel to toe)

X,_ / _i" -_ i50% Load

/ f ---125%

-- 100% Load

b) [degrees] ,_
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7.4 Highest Point of Single Tooth Contact (HPSTC) Analysis
Comparison studies to determine the smallest model that accurately represents

the gear's operating conditions were performed when developing the BEM model.

These results were reported in Section 5.2. Similar comparisons are now made
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between the moving load method and a simplified loading method. Again, the

assumption is that the moving load method is most accurate. The simplified method

assumes a cyclic load at the HPSTC on the pinion tooth. The HPSTC is taken as

contact ellipse number eleven from the discretized moving load; load step eleven is the

final step of single tooth contact in the discretized load data. The magnitude of the

load is defined as 100% design load. The model parameters and material properties

from the moving load analyses are used in the HPSTC predictions.

The initial crack location and geometry are the same as those from the moving

load analyses. The method to propagate the crack under the HPSTC is described in
Section 3.2.3. The method assumes proportional loading. It is assumed that the

HPSTC produces K1,,,a, and that R is zero. The direction of growth is determined by

the maximum principal stress theory using the ratio of K, to K1 from the HPSTC

loading. The extensions for the discrete crack front points are calculated with Paris'
model modified to account for crack closure. Figure 7.14 is a comparison of the crack

trajectories from the moving and HPSTC load methods. Roughly 190,000 cycles have
occurred. The cross section view is taken at the approximate location along the tooth

length of the initial crack front's midpoint.

/ Fixed \E_

/ Moving,,_,,

/' __E/x_Serimental

a) Tooth surface

\. /
,,-..

/

",Moving ,,"
',, ," Experimental

_', /ff

b) Cross section of tooth at midpoint of

initial crack

Figure 7.14: Comparison of crack trajectories from moving load and HPSTC load

(fixed location) methods after N 190,000 cycles.
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Themidpointof thecrackfront is deeperin theHPSTCanalysesafter 190,000
thousandcycles. From Figure 7.14b, it appears that the moving load analysis

trajectory will produce rim failure. Figure 5.14, however, shows that the crack turns

when the predictions are continued. Therefore, both the static and moving load

method predict tooth failure. The slope of the trajectory into the rim in the moving

load prediction matches more closely the observed trajectories in the tested pinion.

This comparison is purely qualitative.

Several obvious differences between the trajectories predicted by the two

methods can be observed. As seen in Figure 7.14a, the HPSTC method predicts a

larger kink at theheel end; the moving load method predicts a larger kink at the toe

end. Considering the location of the HPSTC load, this result is consistent with the

shifted load analyses of Section 7.3.3.

One may conclude from Figure 7.14b that the HPSTC method predicts a larger

crack face area since the cross section view of the crack is deeper, yet the lengths of

the cracks on the tooth surface are roughly equal. Figure 7.15, in general, supports
this conclusion.

0.25

,-.., 0.2!

•-_ 0.15 j ing Load

0.05

0 _

0 50000 100000 150000 200000 250000 300000 350000

N [cycles]

Figure 7.15: Crack area versus number of load cycles for HPSTC and moving load

prediction methods.

In summary, the HPSTC analyses predict the same failure mode as the moving

load analyses. The crack trajectory and fatigue life calculations vary between the two

methods. Since no experimental fatigue life data exists, the accuracy of one methods

fatigue life prediction over the other methods can not be evaluated. The moving load
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predictions match the experimental trajectory into the rim and through the cross

section of the tooth better than the HPSTC prediction. Since the trajectory into or

through the rim is what determines tooth failure or rim failure, it is concluded that the

moving load method is necessary to capture that result most accurately. All of the

trajectories on the tooth surface at the heel end, however, are in reasonable agreement.

Nonetheless, a distinct advantage of the HPSTC method is the significant decrease in

computational time to perform the crack propagation predictions since only one load

case needs to be analyzed.

7.5 Chapter Summary
The results from a fatigue crack growth simulation in a spiral bevel pinion

were compared to crack growth observations in a tested pinion. The comparisons are

summarized as follows:

• The simulations predicted a reasonable fatigue life with respect to the test data.

• The original trajectory predictions failed to capture detailed aspects of the

observed fracture surfaces in the test. It was determined that the simulated loading

on the tooth probably modeled the tooth contact in the test incorrectly. The tooth

contact information used in the predictions assumed perfect alignment between the

pinion and the gear and that the gears were not flawed. Some explanations for the

differences in contact between the test and theory were determined to be:

1. Change in contact location in the test as the crack grew and the tooth
became more flexible.

2. Differences in the magnitude of loading.

3. Crack growth under load control (simulation) versus displacement control

(test).

4. Misalignment between the gear and pinion in the test.

• Additional simulations demonstrated the capability to predict the crack trajectory

observed in the test. A large initial crack, which was assumed to approximate the

location of the crack front just prior to the formation of the ridge, was used and the

crack was propagated through a series of steps.

Sensitivity studies were conducted to determine how changes in some of the

crack growth method's assumptions would modify the predictions. The studies
determined that:

• The fatigue crack growth rate model parameters used in the initial prediction

yielded conservative results.

• The crack front condition is best described as plane strain.

• A reasonable approximation of the dimensionless quantity fl, which incorporates

geometry effects when calculating SIFs, is a value of 1.

• The trajectory observed in the tested pinion would result from a contact biased
toward the toe end.

• The increased torque levels might explain the significant amounts of rubbing seen

on the fracture surfaces of the tested pinion.
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A simplified loadingmethodthat assumesa cyclic load at the HPSTCon the
pinion tooth during meshingwas investigated. The failure modepredictedby this
methodwas the sameasthe moving loadpredictions. However,the crack trajectory
andfatiguelife calculationsvariedbetweenthe two methods. TheHPSTCmethodis
advantageousbecauseit significantlyreducesthe computationaltime. However,upon
comparison of the results from the two methods to experimental results, it is
concludedthat themovingloadmethod'strajectoriesaremoreaccurate.

In summary,insightsinto the intricaciesof modelingfatiguecrack growth in
threedimensionswere gained. Preliminary stepstoward accuratelymodelingcrack
growth in complicatedthree dimensionalobjects such as spiral bevel gears were
completedsuccessfully. To improve the accuracyof the simulations,the changein
contactbetweenspiralbevelgearteethduringoperationasacrackevolvesis needed.
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CHAPTER EIGHT:

CONCLUDING REMARKS

8.1 Accomplishments and Significance of Thesis

This thesis investigated computationally modeling fatigue crack growth in

spiral bevel gears. Predicting crack growth is significant in the context of gear design

because a crack's trajectory determines whether the failure will be benign or

catastrophic. Having the capability to predict crack growth in gears allows a designer

to prevent catastrophic failures. Prior to this thesis, numerical methods had been

limited to modeling cracking in gears with simpler geometry, such as spur gears. Spur

gear geometry permits the use of two dimensional analyses. However, spiral bevel

gears require a three dimensional model of the geometry and cracks. Three

dimensional models are much more complicated to create, require greater computing

power because of the significant increase in degrees of freedom, and no closed form

solutions exist to predict the growth of arbitrary three dimensional cracks. Prior to this

thesis, few predictions of crack growth in spiral bevel gears had been performed.

Accurately modeling three dimensional fatigue crack trajectories in a spiral bevel

pinion required expanding the state-of-the-art capabilities and theories for predicting

fatigue crack growth rates and crack trajectories.

The geometry of a spiral bevel pinion from the transmission system of the U.S.

Army's OH-58 Kiowa Helicopter was used for demonstrative purposes. A BEM

model of the pinion was developed using a computer program developed by

NASA/GRC that calculates the surface coordinates of a spiral bevel gear tooth. Their

tooth contact analysis program was also used to determine the location, orientation,

and magnitude of contact between the pinion and its mating gear. The contact was

represented by discrete traction patches on the gear tooth.
LEFM theories were combined with the BEM to accomplish the crack growth

predictions. The simulations were based on computational fracture mechanics

software developed by the Cornell Fracture Group, which allow for arbitrarily shaped,

three dimensional curved crack fronts and crack trajectories. The crack trajectories

were determined by a Paris model, modified to incorporate crack closure, to calculate

fatigue crack growth rates in conjunction with the maximum principal stress theory to

calculate kink angles.

In operation, the load on a gear tooth varies over time in location and

magnitude. This moving load effect was incorporated into the propagation method.

Only loads normal to a gear tooth's surface were considered. It was discovered that

the moving normal load produces a non-proportional load history in the tooth root.

Proposed prediction methods for fatigue crack growth under non-proportional loads in

the literature were determined to be insufficient for the spiral bevel gear model. As a

result, a method to predict three dimensional fatigue crack growth under non-

proportional loading was developed. The method incrementally advanced the crack

front for a series of discrete load steps throughout one load cycle. A number of load

cycles were then specified, and the crack was advanced an amount based on the

number of specified load cycles and the calculated trajectory from the single load

cycle; the process was then repeated. Some aspects of the final crack trajectory
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predicted by this moving load method differed from a failure in a tested pinion;

however, the method succeeded in predicting a fatigue life comparable to the

experimental data.

Other issues related to modeling crack growth in a gear were also investigated.

For example, the effect of shifting the load location along a tooth's length on the crack

trajectories was confirmed. For a crack that has initiated in the tooth's root, when the

load location is directly above the crack, the crack trajectory will remain very close to

the root. Additionally, the effect of compressive loads on fatigue crack growth rates in

AISI 9310 steel was examined. This examination is significant because a principal

focus of current gear design is to minimize a gear's weight. Reducing the amount of

material in the gear may increase the magnitude of the compressive stresses in a gear

tooth's root, which could influence crack growth rates. It was discovered that the

compressive portion of a load cycle did not significantly modify the rates when crack

closure was incorporated into Paris' model to calculate fatigue crack growth rates. As

a result, the BEM/LEFM analyses of a spiral beve ! pinion were carried out ignoring
the compressive portions of the loading history.

The predictions from the moving load crack propagation method were

compared to predictions when only HPSTC was considered. HPSTC is a more

simplified approach and has been commonly used in past research when numerically

analyzing crack propagation in gears. The HPSTC method utilized existing fatigue

crack growth theories since there was a single load location and proportional loading.

The analyses in this thesis with the two loading methods predicted different fatigue

lives and crack trajectories. The lack of experimental fatigue crack growth rate data

hindered an evaluation of the crack growth rates predicted by the two methods. The

moving load method's crack trajectory predictions agreed more closely to the tested

pinion failures. Crack trajectories are of primary importance to predict the failure
mode.

The dearth of fatigue crack growth rate data and crack front shape information

from tooth failures in a tested spiral bevel pinion motivated SEM observations of the

fracture surfaces. A crack growth scenario was devised from the observations. In

addition, the observations suggested that the failure mechanism along the majority of

the surface was fatigue. This result supported the use of the numerical simulations to

predict fatigue crack growth trajectories in the gear.

As this thesis was a first attempt at predicting fatigue crack growth in spiral

bevel gears, certain limitations were encountered. The limitations can be summarized
as follows:

A scarcity of experimental data prohibited validations of calculated crack growth

rates, fatigue life predictions, and crack front shape evolution.

The effect of tooth deflections on the contact area between mating gear teeth was

not modeled. Capturing this effect will increase the accuracy of the model since

crack trajectories are Strongly determined by the load locations.

It is anticipated that the deflections of a cracked spiral bevel gear tooth will be

limited by the adjacent tooth picking up the load. The magnitude of this
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maximum deflection is unknown. As a result, the simulations did not model this

behavior.

The method to predict crack trajectories under the moving load was time

consuming since every discrete load step had to be analyzed for a full pinion

model. For the method to be more practical to a gear designer, improvements in

the computational time and implementation would have to be made.

In summary, the achievements of this thesis brought the current gear design

approach closer to developing a numerical tool to evaluate safety aspects of gear

geometries. Critical areas that must be understood in greater detail prior to predicting

more accurate crack trajectories and growth rates in three dimensions were identified.

By incorporating non-proportional loading, complex three dimensional geometry, and

arbitrary three dimensional crack models, the work extended the current capabilities

and theories for predicting fatigue crack growth rates and crack trajectories.

8.2 Recommendations for Future Research
The accomplishments of this thesis produced many new questions and issues

related to simulating fatigue crack growth in spiral bevel gears. Future research

focused on the following areas will further assist the development of numerical design

tools to evaluate a gear design's safety.

• A testing program centered on fatigue crack growth rates and trajectories from

non-proportional loads should be carried out. A more fundamental understanding

of crack behavior in this type of loading environment is needed to enhance the

accuracy of fatigue crack growth rate models. To gain insights into the

fundamental behavior, the tests do not have to be conducted with spiral bevel

gears. To judge the correctness of the predictions in this thesis, however, more

tests on spiral bevel gears that record crack growth rates and trajectories over a

time period are necessary. Such test data are essential to confirm the accuracy of

the simulations and to evaluate the proposed method for predicting crack growth

under the moving tooth load.

• A more detailed understanding of the contact between a cracked gear tooth mating

with an uncracked gear tooth is required. The load redistribution effects in this

scenario could be studied either experimentally or numerically. Numerical studies

would require a fully three dimensional, LEFM, and contact analysis of the rolling

process between two mating gears. Once the redistribution effects are captured,

the findings could be applied to crack growth simulations. The expectation is that
the simulations would model more accurately the observed behavior in real

failures.

• The analyses in this thesis considered only loads normal to the tooth surface.

However, a gear tooth is subjected to a variety of loads in operation. For example,

the contact between the mating gears also produces frictional forces along with the

normal loads over the contact ellipse area. Gears in rotorcraft applications operate

at elevated temperature, and, therefore, thermal effects might be included. In

addition, the rotation of the gear produces centrifugal forces. Dynamic loads are
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producedfrom thecontactbetweenthe matinggearsin conjunctionwith the high
loadingfrequency. Severalresearchershave alsomodeledtheresidualstressesin
agear,which result from thedifferencein hardnessbetweenthecaseandcore, in
numerical analysesby thermal loads. Parametric studies to determine the
significanceof all theseloadingvariableson predictedfatigue crackgrowth in a
spiralbevelgearis imperativeto thedevelopmentof numericalgeardesigntools.
Furtherwork to enhancethespeedof the numericalanalysesand increasethe SIF
accuracywould bebeneficial. One methodto improve the accuracyis to usethe
FEM. However, meshing three dimensional volumes with cracks introduces
additionaldifficulties. Researchis currentlyunderway,andshouldbe continued,
to overcomethesemeshingdifficulties. The computationaltime will continueto
decreaseas computertechnology rapidly advances. The overall objective of
developinga practicaland accuratenumericaldesigntool for any type of gear is
foreseeablein thenearfuture.
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APPENDIX A
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Figure A. 1: Mode II SIF distribution for load steps one through eleven.
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APPENDIX B

Figure B. 1: Fatigue striations in Figure 6.5 at 360x (a) and 1,000x (b).

An additional point of interest is captured in Figure B.3. The figure is of the

tooth surface. The horizontal lines are the grooves from the machining of the gear. In

addition, two pits are observed on the surface. These pits could have resulted from

several variables such as particles that were caught on the surface during meshing of

the teeth, manufacturing flaws, surface wear, etc. The cuts and pits give an indication

of the initial flaw size from which fatigue cracks may originate.

5_
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Figure B.2: Typical picture of flat, polished area on tooth #11 (400×). Photograph was
taken near location B in Figure 6.4.

Figure B.3: Machining grooves and pits on tooth surface (280×).
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APPENDIX C
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